Loss of Lysyl Oxidase-like 3 Attenuates Embryonic Lung Development in Mice.

Sci Rep

School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China.

Published: September 2016

Lysyl oxidase-like 3 (LOXL3), a human disease gene candidate, is a member of the lysyl oxidase (LOX) family and is indispensable for mouse palatogenesis and vertebral column development. Our previous study showed that the loss of LOXL3 resulted in a severe cleft palate and spinal deformity. In this study, we investigated a possible role for LOXL3 in mouse embryonic lung development. LOXL3-deficient mice displayed reduced lung volumes and weights, diminished saccular spaces, and deformed and smaller thoracic cavities. Excess elastic fibres were detected in LOXL3-deficient lungs, which might be related to the increased LOXL4 expression. Increased transforming growth factor β1 (TGFβ1) expression might be involved in the up-regulation of LOXL4 in LOXL3-deficient lungs. We concluded that the loss of LOXL3 attenuates mouse embryonic lung development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029289PMC
http://dx.doi.org/10.1038/srep33856DOI Listing

Publication Analysis

Top Keywords

embryonic lung
12
lung development
12
lysyl oxidase-like
8
loss loxl3
8
mouse embryonic
8
loxl3-deficient lungs
8
loss lysyl
4
oxidase-like attenuates
4
attenuates embryonic
4
lung
4

Similar Publications

Introduction: MRTX1133 is a selective and reversible small molecule inhibitor of KRAS (G12D), which significantly delays the progression of solid tumors. However, no study on the absorption, distribution, and excretion of MRTX1133.

Methods: A fast ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry method was developed for the determination of MRTX1133 in rat plasma, tissue homogenate, and urine.

View Article and Find Full Text PDF

Persistence and/or Senescence: Not So Lasting at Last?

Cancer Res

January 2025

Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité - Universitätsmedizin, Berlin, Germany.

Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells.

View Article and Find Full Text PDF

Based on the antigenic similarity between tumor cells and embryonic stem cells (ESCs), several recent studies report the use of intact murine ESCs or exosomes from murine ESCs as cancer vaccines. Since the capacity for self-renewal is one of the most specialized properties shared between ESCs and a subset of tumor cells, cancer stem cells (CSCs), we investigated whether the undifferentiated state of murine ESCs is essential for the prophylactic effectiveness of an ESC-based vaccine. The undifferentiated state of ES-D3, a murine ESC line, was essential for their anchorage-independent growth potential.

View Article and Find Full Text PDF

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!