Background: The role that dietary interventions can play in multiple sclerosis (MS) management is of huge interest amongst patients and researchers but data evaluating this is limited. Possible effects of a very-low-fat, plant-based dietary intervention on MS related progression and disease activity as measured by brain imaging and MS related symptoms have not been evaluated in a randomized-controlled trial. Despite use of disease modifying therapies (DMT), poor quality of life (QOL) in MS patients can be a significant problem with fatigue being one of the common disabling symptoms. Effective treatment options for fatigue remain limited. Emerging evidence suggests diet and vascular risk factors including obesity and hyperlipidemia may influence MS disease progression and improve QOL.

Objectives: To evaluate adherence, safety and effects of a very-low-fat, plant-based diet (Diet) on brain MRI, clinical [MS relapses and disability, body mass index (BMI)] and metabolic (blood lipids and insulin) outcomes, QOL [Short Form-36 (SF-36)], and fatigue [Fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS)], in relapsing-remitting MS (RRMS).

Methods: This was a randomized-controlled, assessor-blinded, one-year long study with 61 participants assigned to either Diet (N=32) or wait-listed (Control, N=29) group.

Results: The mean age (years) [Control-40.9±8.48; Diet-40.8±8.86] and the mean disease duration (years) [Control -5.3±3.86; Diet-5.33±3.63] were comparable between the two groups. There was a slight difference between the two study groups in the baseline mean expanded disability status scale (EDSS) score [Control-2.22±0.90; Diet-2.72±1.05]. Eight subjects withdrew (Diet, N=6; Control, N=2). Adherence to the study diet based on monthly Food Frequency Questionnaire (FFQ) was excellent with the diet group showing significant difference in the total fat caloric intake compared to the control group [total fat intake/total calories averaged ~15% (Diet) versus ~40% (Control)]. The two groups showed no differences in brain MRI outcomes, number of MS relapses or disability at 12 months. The diet group showed improvements at six months in low-density lipoprotein cholesterol (Δ=-11.99mg/dL; p=0.031), total cholesterol (Δ=-13.18mg/dL; p=0.027) and insulin (Δ=-2.82mg/dL; p=0.0067), mean monthly reductions in BMI (Rate=-1.125kg/m2 per month; p<0.001) and fatigue [FSS (Rate=-0.0639 points/month; p=0.0010); MFIS (Rate=-0.233 points/month; p=0.0011)] during the 12-month period.

Conclusions: While a very-low fat, plant-based diet was well adhered to and tolerated, it resulted in no significant improvement on brain MRI, relapse rate or disability as assessed by EDSS scores in subjects with RRMS over one year. The diet group however showed significant improvements in measures of fatigue, BMI and metabolic biomarkers. The study was powered to detect only very large effects on MRI activity so smaller but clinically meaningful effects cannot be excluded. The diet intervention resulted in a beneficial effect on the self-reported outcome of fatigue but these results should be interpreted cautiously as a wait-list control group may not completely control for a placebo effect and there was a baseline imbalance on fatigue scores between the groups. If maintained, the improved lipid profile and BMI could yield long-term vascular health benefits. Longer studies with larger sample sizes are needed to better understand the long-term health benefits of this diet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msard.2016.07.001DOI Listing

Publication Analysis

Top Keywords

diet
10
plant-based diet
8
multiple sclerosis
8
effects very-low-fat
8
very-low-fat plant-based
8
brain mri
8
relapses disability
8
diet group
8
low-fat plant-based
4
diet multiple
4

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

Objective: To investigate the prospective associations between age and the risk of low back disorders (LBD), dorsal disorders (DD), and cervical disorders (CD), and to identify a potential age-threshold for increased risk of back disorders.

Methods: Prospective cohort from the UK Biobank comprising adults with no history of back disorders. We examined different ages and their association with the risk of back disorders derived from diagnoses of hospital registers.

View Article and Find Full Text PDF

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Effect of anthocyanin rich black sugarcane on milk production and antioxidant capacity in lactating dairy cows.

Sci Rep

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.

This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.

View Article and Find Full Text PDF

Sleep tests commonly diagnose sleep disorders, but the diverse sleep-related biomarkers recorded by such tests can also provide broader health insights. In this study, we leveraged the uniquely comprehensive data from the Human Phenotype Project cohort, which includes 448 sleep characteristics collected from 16,812 nights of home sleep apnea test monitoring in 6,366 adults (3,043 male and 3,323 female participants), to study associations between sleep traits and body characteristics across 16 body systems. In this analysis, which identified thousands of significant associations, visceral adipose tissue (VAT) was the body characteristic that was most strongly correlated with the peripheral apnea-hypopnea index, as adjusted by sex, age and body mass index (BMI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!