Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1.

J Steroid Biochem Mol Biol

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States. Electronic address:

Published: March 2017

AI Article Synopsis

  • Small molecule inhibitors of lysine deacetylases (KDACs) are clinically approved and play a critical role in regulating gene expression through acetylation and deacetylation, particularly in relation to the glucocorticoid receptor (GR).
  • Inhibition of Class I KDACs through selective inhibitors selectively blocked glucocorticoid-mediated transcriptional repression, highlighting their essential role in maintaining gene repression.
  • The study suggests that KDACs suppress the activity of the lysine demethylase LSD1, which opposes transcriptional repression in certain gene contexts, indicating a complex interplay between these enzymes and gene regulation.

Article Abstract

Small molecule inhibitors of lysine deacetylases (KDACs) are approved for clinical use in treatment of several diseases. Nuclear receptors, such as the glucocorticoid receptor (GR) use lysine acetyltransferases (KATs or HATs) and KDACs to regulate transcription through acetylation and deacetylation of protein targets such as histones. Previously we have shown that KDAC1 activity facilitates GR-activated transcription at about half of all cellular target genes. In the current study we examine the role of Class I KDACs in glucocorticoid-mediated repression of gene expression. Inhibition of KDACs through two structurally distinct Class I-selective inhibitors prevented dexamethasone (Dex)-mediated transcriptional repression in a gene-selective fashion. In addition, KDAC activity is also necessary to maintain repression. Steroid receptor coactivator 2 (SRC2), which is known to play a vital role in GR-mediated repression of pro-inflammatory genes, was found to be dispensable for repression of glucocorticoid target genes sensitive to KDAC inhibition. At the promoters of these genes, KDAC inhibition did not result in altered nucleosome occupancy or histone H3 acetylation. Surprisingly, KDAC inhibition rapidly induced a significant decrease in H3K4Me2 at promoter nucleosomes with no corresponding change in H3K4Me3, suggesting the activation of the lysine demethylase, LSD1/KDM1A. Depletion of LSD1 expression via siRNA restored Dex-mediated repression in the presence of KDAC inhibitors, suggesting that LSD1 activation at these gene promoters is incompatible with transcriptional repression. Treatment with KDAC inhibitors does not alter cellular levels of LSD1 or its association with Dex-repressed gene promoters. Therefore, we conclude that Class I KDACs facilitate Dex-induced transcriptional repression by suppressing LSD1 complex activity at selected target gene promoters. Rather than facilitating repression of transcription, LSD1 opposes it in these gene contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444329PMC
http://dx.doi.org/10.1016/j.jsbmb.2016.09.014DOI Listing

Publication Analysis

Top Keywords

transcriptional repression
16
kdac inhibition
12
gene promoters
12
repression
10
lysine deacetylases
8
target genes
8
class kdacs
8
kdac inhibitors
8
lsd1
6
kdac
6

Similar Publications

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

Repressing cytokine storm-like response in macrophages by targeting the eIF2α-integrated stress response pathway.

Int Immunopharmacol

January 2025

Department of Geriatric Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China. Electronic address:

Cytokine storm is a life-threatening systemic hyper-inflammatory state caused by different etiologies, in which the bulk production of pro-inflammatory cytokines from activated macrophages has a central role. Integrated stress response (ISR) comprises several protective signaling pathways, leading to phosphorylation of eukaryotic initiation factor 2α (eIF2α) and repression of protein translation. Emerging evidence suggests that ISR induction may elicit anti-inflammatory effects.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!