Primary breast cancer cell culture yields intra-tumor heterogeneous subpopulations expressing exclusive patterns of receptor tyrosine kinases.

BMC Cancer

Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico.

Published: September 2016

Background: It has become evident that intra-tumor heterogeneity of breast cancer impact on several biological processes such as proliferation, migration, cell death and also might contribute to chemotherapy resistance. The expression of Receptor Tyrosine Kinases (RTKs) has not been analyzed in the context of intra-tumor heterogeneity in a primary breast cancer cell culture. Several subpopulations were isolated from the MBCDF (M serial-breast cancer ductal F line) primary breast cancer cells and were successfully maintained in culture and divided in two groups according to their morphology and RTKs expression pattern, and correlated with biological processes like proliferation, migration, anchorage-independent cell growth, and resistance to cytotoxic chemotherapy drugs and tyrosine kinase inhibitors (TKIs).

Methods: Subpopulations were isolated from MBCDF primary breast cancer cell culture by limiting dilution. RTKs and hormone receptors were examined by Western blot. Proliferation was measure by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT assay). Cell viability was evaluated by Crystal Violet. Migration was assessed using Boyden chambers. Anchorage-independent cell growth was evaluated by colony formation in soft agar.

Results: Several subpopulations were isolated from the MBCDF breast cancer cells that were divided into two groups according to their morphology. Analysis of RTKs expression pattern showed that HER1, HER3, c-Met and VEGFR2 were expressed exclusively in cells from group 1, but not in cells from group 2. PDGFR was expressed only in cells from group 2, but not in cells from group 1. HER2, HER4, c-Kit, IGF1-R were expressed in all subpopulations. Biological processes correlated with the RTKs expression pattern. Group 2 subpopulations present the highest rate of cell proliferation, migration and anchorage-independent cell growth. Analysis of susceptibility to chemotherapy drugs and TKIs showed that only Paclitaxel and Imatinib behaved differently between groups. Group 1-cells were resistant to both Paclitaxel and Imatinib.

Conclusions: We demonstrated that subpopulations from MBCDF primary cell culture could be divided into two groups according to their morphology and a RTKs excluding-expression pattern. The differences observed in RTKs expression correlate with the biological characteristics and chemoresistance of each group. These results suggest that intra-tumor heterogeneity contributes to generate groups of subpopulations with a more aggressive phenotype within the tumor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028979PMC
http://dx.doi.org/10.1186/s12885-016-2769-0DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
primary breast
16
cell culture
16
rtks expression
16
cells group
16
cancer cell
12
intra-tumor heterogeneity
12
biological processes
12
proliferation migration
12
subpopulations isolated
12

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

the evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.

View Article and Find Full Text PDF

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!