Cost-effective and scalable preparation of two-dimensional (2D) molybdenum disulfide (MoS2) has been the bottleneck that limits their applications. This paper reports a novel coupled ultrasonication-milling (CUM) process to exfoliate natural molybdenite powders to achieve few-layer MoS2 (FL-MoS2) nanosheets in the solvent of N-methyl-2-pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules. The synergistic effect of ultrasonication and sand milling highly enhanced the exfoliation efficiency, and the precursor of natural molybdenite powders minimizes the synthetic cost of FL-MoS2 nanosheets. The exfoliation of natural molybdenite powders was conducted in a home-made CUM system, mainly consisting of an ultrasonic cell disruptor and a ceramic sand mill. The samples were characterized by X-ray diffraction, UV-vis spectra, Raman spectra, FT-IR, SEM, TEM, AFM, and N2 adsorption-desorption. The factors that influence the exfoliation in the CUM process, including the initial concentration of natural molybdenite powders (C in, 15-55 g L(-1)), ultrasonic power (P u, 200-350 W), rotation speed of sand mill (ω s, 1500-2250 r.p.m), exfoliation time (t ex, 0.5-6 h), and the molar ratio of PVP unit to MoS2 (R pm, 0-1), were systematically investigated. Under the optimal CUM conditions (i.e., C in = 45 g L(-1), P u = 280 W, ω s = 2250 r.p.m and R pm = 0.5), the yield at t ex = 6 h reaches 21.6 %, and the corresponding exfoliation rate is as high as 1.42 g L(-1) h(-1). The exfoliation efficiency of the CUM mode is much higher than that of either the ultrasonication (U) mode or the milling (M) mode. The synergistic mechanism and influencing rules of the CUM process in exfoliating natural molybdenite powders were elaborated. The as-obtained FL-MoS2 nanosheets have a high specific surface area of 924 m(2) g(-1) and show highly enhanced electrocatalytic performance in hydrogen evolution reaction and good electrochemical sensing property in detecting ascorbic acid. The CUM process developed has paved a low-cost, green, and highly efficient way towards FL-MoS2 nanosheets from natural molybdenite powders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028352PMC
http://dx.doi.org/10.1186/s11671-016-1622-3DOI Listing

Publication Analysis

Top Keywords

natural molybdenite
28
molybdenite powders
28
cum process
16
fl-mos2 nanosheets
16
few-layer mos2
8
exfoliating natural
8
coupled ultrasonication-milling
8
highly enhanced
8
exfoliation efficiency
8
sand mill
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!