The autism-related protein Fragile X mental retardation protein (FMRP) is an RNA binding protein that plays important roles during both nervous system development and experience dependent plasticity. Alternative splicing of the Fmr1 locus gives rise to 12 different FMRP splice forms that differ in the functional and regulatory domains they contain as well as in their expression profile among brain regions and across development. Complete loss of FMRP leads to morphological and functional changes in neurons, including an increase in the size and complexity of the axonal arbor. To investigate the relative contribution of the FMRP splice forms to the regulation of axon morphology, we overexpressed individual splice forms in cultured wild type rat cortical neurons. FMRP overexpression led to a decrease in axonal arbor complexity that suggests that FMRP regulates axon branching. This reduction in complexity was specific to three splice forms-the full-length splice form 1, the most highly expressed splice form 7, and splice form 9. A focused analysis of splice form 7 revealed that this regulation is independent of RNA binding. Instead this regulation is disrupted by mutations affecting phosphorylation of a conserved serine as well as by mutating the nuclear export sequence. Surprisingly, this mutation in the nuclear export sequence also led to increased localization to the distal axonal arbor. Together, these findings reveal domain-specific functions of FMRP in the regulation of axonal complexity that may be controlled by differential expression of FMRP splice forms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 738-752, 2017.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357598PMC
http://dx.doi.org/10.1002/dneu.22453DOI Listing

Publication Analysis

Top Keywords

axonal arbor
16
splice forms
16
splice form
16
fmrp splice
12
splice
10
fmrp
9
regulation axonal
8
arbor complexity
8
rna binding
8
nuclear export
8

Similar Publications

An unstable variant of GAP43 leads to neurodevelopmental deficiency.

Sci Rep

December 2024

Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.

Growth-associated protein 43 (GAP43) is a membrane-associated phosphoprotein predominantly expressed in the nervous systems, and controls axonal growth, branching, and pathfinding. While the association between GAP43 and human neurological disorders have been reported, the underlying mechanisms remain largely unknown. We performed whole exome sequencing on a patient with intellectual disability (ID), neurodevelopmental disorders, short stature, and skeletal abnormalities such as left-right difference in legs and digital deformities, and identified a heterozygous missense variation in the GAP43 gene [NM_001130064.

View Article and Find Full Text PDF

Neuropathy and the metabolic syndrome.

eNeurologicalSci

March 2025

Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.

Obesity and the metabolic syndrome (MetS) are major global health challenges that contribute significantly to the rising prevalence of type 2 diabetes (T2D) and neuropathy. Neuropathy, a common and disabling complication of T2D, is characterized by progressive distal-to-proximal axonal degeneration, driven in part by mitochondrial dysfunction in both neurons and axons. Recent evidence points to the toxic effects of saturated fatty acids on peripheral nerve health, with studies demonstrating that these fats impair mitochondrial function and bioenergetics, leading to distal axonal loss.

View Article and Find Full Text PDF

Caliber of sensory axons in vivo varies spatially and temporally and is influenced by the cellular microenvironment.

bioRxiv

December 2024

Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.

Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Most studies of axon caliber focus on cell-wide regulation and assume that caliber is static.

View Article and Find Full Text PDF

Overexpression of Nogo-A changes nerve growth factor signaling dynamics in PC12 cells.

Cell Signal

December 2024

Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA.

The nerve growth factor (NGF) receptor TrkA is a tightly regulated receptor tyrosine kinase that activates neuronal signaling pathways promoting cell survival in addition to axonal and dendritic outgrowth. Previously, we showed that NGF and TrkA signaling is altered in neuron-like PC12 cells that overexpress Nogo-A, a protein known to influence axonal outgrowth and dendritic arborization associated with neuronal plasticity. In the present report, we provide evidence for changes in NGF-mediated receptor-level and downstream signaling that occur in cells overexpressing Nogo-A.

View Article and Find Full Text PDF

Alterations in mitochondrial function are the linchpin in numerous disease states including in the development of chemotherapy-induced neuropathic pain (CIPN), a major dose-limiting toxicity of widely used chemotherapeutic cytotoxins. In CIPN, mitochondrial dysfunction is characterized by deficits in mitochondrial bioenergetics (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!