StemCellCKB: An Integrated Stem Cell-Specific Chemogenomics KnowledgeBase for Target Identification and Systems-Pharmacology Research.

J Chem Inf Model

Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Published: October 2016

Given the capacity of self-renewal and multilineage differentiation, stem cells are promising sources for use in regenerative medicines as well as in the clinical treatment of certain hematological malignancies and degenerative diseases. Complex networks of cellular signaling pathways largely determine stem cell fate and function. Small molecules that modulate these pathways can provide important biological and pharmacological insights. However, it is still challenging to identify the specific protein targets of these compounds, to explore the changes in stem cell phenotypes induced by compound treatment and to ascertain compound mechanisms of action. To facilitate stem cell related small molecule study and provide a better understanding of the associated signaling pathways, we have constructed a comprehensive domain-specific chemogenomics resource, called StemCellCKB ( http://www.cbligand.org/StemCellCKB/ ). This new cloud-computing platform describes the chemical molecules, genes, proteins, and signaling pathways implicated in stem cell regulation. StemCellCKB is also implemented with web applications designed specifically to aid in the identification of stem cell relevant protein targets, including TargetHunter, a machine-learning algorithm for predicting small molecule targets based on molecular fingerprints, and HTDocking, a high-throughput docking module for target prediction and systems-pharmacology analyses. We have systematically tested StemCellCKB to verify data integrity. Target-prediction accuracy has also been validated against the reported known target/compound associations. This proof-of-concept example demonstrates that StemCellCKB can (1) accurately predict the macromolecular targets of existing stem cell modulators and (2) identify novel small molecules capable of probing stem cell signaling mechanisms, for use in systems-pharmacology studies. StemCellCKB facilitates the exploration and exchange of stem cell chemogenomics data among members of the broader research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323316PMC
http://dx.doi.org/10.1021/acs.jcim.5b00748DOI Listing

Publication Analysis

Top Keywords

stem cell
32
signaling pathways
12
stem
10
cell
8
small molecules
8
protein targets
8
small molecule
8
stemcellckb
6
stemcellckb integrated
4
integrated stem
4

Similar Publications

Zebrafish ETS transcription factor Fli1b functions upstream of Scl/Tal1 during embryonic hematopoiesis.

Biol Open

March 2025

Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA.

During embryonic development vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. An evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in the hemangioblast formation and hematopoietic and vascular development. However, its role in regulating hemangioblast transition into hematovascular lineages is still incompletely understood.

View Article and Find Full Text PDF

Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells.

View Article and Find Full Text PDF

Harnessing intelligence from brain cells in vitro requires a multidisciplinary approach integrating wetware, hardware, and software. Wetware comprises the in vitro brain cells themselves, where differentiation from induced pluripotent stem cells offers ethical scalability; hardware typically involves a life support system and a setup to record the activity from and deliver stimulation to the brain cells; and software is required to control the hardware and process the signals coming from and going to the brain cells. This review provides a broad summary of the foundational technologies underpinning these components, along with outlining the importance of technology integration.

View Article and Find Full Text PDF

Implementation of a novel hybrid cord blood banking model within a private-public-partnership.

Transfusion

March 2025

Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland.

Background: Umbilical cord blood (UCB) stem cells can be collected at birth, cryopreserved, and used for transplantation in hematopoietic diseases. Typically, these stem cells are stored in public banks for allogeneic use or in private depositories for potential future utilization by the family. A proposed third option, hybrid cord blood banking, combines elements of both public and private storage.

View Article and Find Full Text PDF

Enforcement of stem-cell dormancy by nucleophosmin mutation is a critical determinant of unrestricted self-renewal during myeloid leukemogenesis.

Haematologica

March 2025

Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan.

Mutations in the NPM1 gene (NPMc+) and in the FLT3 gene (FLT3-ITD) represent the most frequent co-occurring mutations in Acute Myeloid Leukemia (AML), yet the cellular and molecular mechanisms of their cooperation remain largely unexplored. Using mouse models that faithfully recapitulate human AML, we investigated the impact of these oncogenes on pre-leukemic and leukemic hematopoietic stem cells (HSCs), both separately and in combination. While both NPMc+ and Flt3-ITD promote the proliferation of pre-leukemia HSCs, only NPMc+ drives extended selfrenewal by preventing the depletion of the quiescent HSC pool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!