Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.

Bioresour Technol

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, PR China; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy Center, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:

Published: December 2016

The aim of this study is to evaluate the feasibility of using lipid-accumulating microalgae to remove cephalosporin antibiotics 7-amino cephalosporanic acid (7-ACA) from wastewater with the additional benefit of biofuels production. Three isolated microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Mychonastes sp. YL-02) were cultivated under 7-ACA stress and their biomass productivity, lipid production and N-NO consumption were monitored. It was found that 7-ACA had slight inhibition effects on the microalgal growth at the ratio of 12.0% (Cha-01), 9.6% (YL-02), 11.7% (Tai-03). However, lipid accumulation in the three microalgae was not influenced by the presence of 7-ACA. The investigation on the 7-ACA removal mechanisms during microalgal growth shows that 7-ACA was mainly removed by microalgae adsorption as well as hydrolysis and photolysis reactions. This study demonstrates that using microalgae to treat antibiotic-containing wastewater is promising due to the potential of simultaneous antibiotic removal and biofuel production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.09.036DOI Listing

Publication Analysis

Top Keywords

cephalosporin antibiotics
8
7-aca wastewater
8
lipid-accumulating microalgae
8
microalgal growth
8
7-aca
7
microalgae
5
removal cephalosporin
4
antibiotics 7-aca
4
wastewater cultivation
4
cultivation lipid-accumulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!