A new electron-rich fragment, namely the quinolinophenothiazine (QPTZ) is reported. The QPTZ fragment incorporated in spiroconfigured materials leads to higher performance in blue Phosphorescent OLEDs than structurally related phenylacridine and indoloacridine based materials (increasing the HOMO energy level, modulating the spin-orbit coupling, etc.) and leads to highly efficient blue phosphorescent organic light emitting diodes, indicating the strong potential of this new molecular fragment in organic electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201603659DOI Listing

Publication Analysis

Top Keywords

electron-rich fragment
8
fragment organic
8
organic electronics
8
blue phosphorescent
8
9h-quinolino[321-k]phenothiazine electron-rich
4
fragment
4
electronics electron-rich
4
fragment quinolinophenothiazine
4
quinolinophenothiazine qptz
4
qptz reported
4

Similar Publications

The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.

View Article and Find Full Text PDF

Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality.

View Article and Find Full Text PDF

The thia-Paternò-Büchi reaction represents a straightforward approach to build thietane cores. Unfortunately, the significant instability of thiocarbonyls, particularly thioketones and thioaldehydes, has hitherto rendered this photochemical [2+2]-cycloaddition underexploited. To address this limitation, we report herein a visible-light photochemical domino reaction including: the in situ generation of thiocarbonyls though a Norrish type II fragmentation of pyrenacyl sulfides, and the aforementioned thia-Paternò-Büchi reaction with various non-volatile electron-rich alkenes.

View Article and Find Full Text PDF

Tripodal ligands that can encapsulate single or multiple metal sites in -symmetric geometric configurations constitute valuable targets for novel catalysts. Of particular interest in ligand development are efforts toward incorporating apical elements that exhibit little if any electron donicity, to enhance the electrophilic nature of a positioned active oxidant (, metal-oxo, -nitrene). The tripodal ligand TMGtrphen-Arene has been synthesized, featuring an arene platform 1,3,5-substituted with phenylene arms possessing tetramethylguanidinyl (TMG) residues.

View Article and Find Full Text PDF

Using Rigidity and Conjugation of Subunits to Modulate Supramolecular Topologies Constructed by Half-Sandwich Fragments.

Chem Asian J

December 2024

Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P. R. China.

The synthesis of supramolecular compounds with a high degree of controllability and the targeted modulation of their topological transitions pose significant challenges in situ. In this study, we have successfully constructed an array of discrete structures based on a series of bidentate pyridyl ligands (L1, L2, and L3), which were subsequently ligated with half-sandwiched (Cp*Ir fragments) building blocks. Our further investigations elucidate a strategy for coordinating the relative lengths of the bidentate ligands with the building blocks, achieving specific concentrations that drive the transformation of tetranuclear metal macrocycles into Borromean rings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!