Epitope-tagging is an effective tool to facilitate protein enrichment from crude cell extracts. Traditionally, N- or C-terminal fused tags are employed, which, however, can perturb protein function. Unnatural amino acids (UAAs) harboring small reactive handles can be site-specifically incorporated into proteins, thus serving as a potential alternative for conventional protein tags. Here, we introduce Click-MS, which combines the power of site-specific UAA incorporation, bioorthogonal chemistry, and quantitative mass spectrometry-based proteomics to specifically enrich a single protein of interest from crude mammalian cell extracts. By genetic encoding of p-azido-l-phenylalanine, the protein of interest can be selectively captured using copper-free click chemistry. We use Click-MS to enrich proteins that function in different cellular compartments, and we identify protein-protein interactions, showing the great potential of Click-MS for interaction proteomics workflows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.6b00520 | DOI Listing |
Front Immunol
January 2025
Department of Gynecology, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
Backgrounds: Collagen type I alpha 1 chain (COL1A1) is a key protein encoding fibrillar collagen, playing a crucial role in the tumor microenvironment (TME) due to its complex functions and close association with tumor invasiveness. This has made COL1A1 a focal point in cancer biology research. However, studies investigating the relationship between COL1A1 expression levels and clinical characteristics of ovarian cancer (OC) remain limited.
View Article and Find Full Text PDFFront Immunol
January 2025
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.
Introduction: Myeloid cells trafficking from the periphery to the central nervous system are key players in multiple sclerosis (MS) through antigen presentation, cytokine secretion and repair processes.
Methods: Combination of mass cytometry on blood cells from 60 MS patients at diagnosis and 29 healthy controls, along with single cell RNA sequencing on paired blood and cerebrospinal fluid (CSF) samples from 5 MS patients were used for myeloid cells detailing.
Results: Myeloid compartment study demonstrated an enrichment of a peculiar classical monocyte population in 22% of MS patients at the time of diagnosis.
Front Immunol
January 2025
Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States.
Sepsis is a severe and life-threatening medical syndrome that can lead to organ failure and death. Despite advances in medical treatment, current therapies are often inadequate, with high septic mortality rates. Therefore, there is a critical need for reliable prognostic markers to be used in clinical settings to improve the management and outcomes of patients with sepsis.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland.
The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!