Intermolecular Interaction between Phosphatidylcholine and Sulfobetaine Lipid: A Combination of Lipids with Antiparallel Arranged Headgroup Charge.

Langmuir

Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

Published: October 2016

Intermolecular interactions between lipid molecules are important when designing lipid bilayer interfaces, which have many biomedical applications such as in drug delivery vehicles and biosensors. Phosphatidylcholine, a naturally occurring lipid, is the most common lipid found in organisms. Its chemical structure has a negatively charged phosphate linkage, adjacent to an ester linkage in a glycerol moiety, and a positively charged choline group, placed at the terminus of the molecule. Recently, several types of synthetic lipids that have headgroups with the opposite charge to that of phosphatidylcholine have emerged; that is, a positively charged ammonium group is present adjacent to the ester linkage in their glycerol moiety and a negatively charged group is placed at their terminus. These types of lipids constitute a new class of soft material. The aim of this study was to determine how such lipids, with antiparallel arranged headgroup charge, interact with naturally occurring phosphatidylcholines. We synthesized 1,2-dipalmitoyl-sn-glycero-3-sulfobetaine (DPSB) to represent a reversed-head lipid; 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was used to represent a naturally occurring phospholipid. The intermolecular interaction between these lipids was investigated using surface pressure-area (π-A) isotherms of the lipid monolayer at the air/water interface. We found that the extrapolated area and excess free energy of the mixed monolayer deviated negatively when compared with the ideal values from additivity. Moreover, differential scanning calorimetry of the lipid mixture in aqueous dispersion showed that the gel-to-liquid crystal transition temperature increased compared with that of each pure lipid composition. These results clearly indicate that DPSB preferably interacts with DPPC in the mixture. We believe that the attraction between the oppositely charged headgroups of these lipids reinforces the intermolecular interaction. Our results provide insight into the intermolecular interaction between phospholipids and reversed-head lipids, which may prove useful for the design of lipid-based materials in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b02563DOI Listing

Publication Analysis

Top Keywords

intermolecular interaction
16
naturally occurring
12
lipid
9
lipids antiparallel
8
antiparallel arranged
8
arranged headgroup
8
headgroup charge
8
negatively charged
8
adjacent ester
8
ester linkage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!