This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0-200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013241 | PMC |
http://dx.doi.org/10.1155/2016/4846738 | DOI Listing |
Inflamm Regen
January 2025
Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.
Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, University of Maryland School of Medicine, 419 West Redwood Street, Suite 235, Baltimore, MD, 21201, USA.
Erythroderma is a severe and heterogeneous inflammatory skin condition with little guidance on the approach to management in cases of unknown etiology. To guide therapeutic selection, we sought to create an immunophenotyping platform able to identify aberrant cell populations and cytokines in subtypes of erythroderma. We performed high-parameter flow cytometry on peripheral blood mononuclear cells (PBMCs) and whole blood of a patient with refractory idiopathic erythroderma, erythrodermic patients with Sézary syndrome and pityriasis rubra pilaris, and healthy controls.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
The ongoing circulation of influenza A H5N1 in the United States has raised concerns of a pandemic caused by highly pathogenic avian influenza. Although the United States has stockpiled and is prepared to produce millions of vaccine doses to address an H5N1 pandemic, currently circulating H5N1 viruses contain multiple mutations within the immunodominant head domain of hemagglutinin (HA) compared to the antigens used in stockpiled vaccines. It is unclear if these stockpiled vaccines will need to be updated to match the contemporary H5N1 strains.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, Maryland, USA.
Background And Purpose: Prolonged venous transit (PVT), derived from computed tomography perfusion (CTP) time-to-maximum (T) maps, reflects compromised venous outflow (VO) in acute ischemic stroke due to large vessel occlusion (AIS-LVO). Poor VO is associated with worse clinical outcomes, but pre-treatment markers predictive of PVT are not well described.
Methods: We conducted a retrospective analysis of 189 patients with anterior circulation AIS-LVO who underwent baseline CT evaluation, including non-contrast CT, CT angiography, and CTP.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!