Post-translational modification of histones is a crucial mode of transcriptional regulation in eukaryotes. A well-described acetylation modifier of certain lysine residues is the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex assembled around the histone acetyltransferase Gcn5 in Saccharomyces cerevisiae. We identified and characterized the SAGA complex in the rice pathogen Fusarium fujikuroi, well-known for producing a large variety of secondary metabolites (SMs). By using a co-immunoprecipitation approach, almost all of the S. cerevisiae SAGA complex components have been identified, except for the ubiquitinating DUBm module and the chromodomain containing Chd1. Deletion of GCN5 led to impaired growth, loss of conidiation and alteration of SM biosynthesis. Furthermore, we show that Gcn5 is essential for the acetylation of several histone 3 lysines in F. fujikuroi, that is, H3K4, H3K9, H3K18 and H3K27. A genome-wide microarray analysis revealed differential expression of about 30% of the genome with an enrichment of genes involved in primary and secondary metabolism, transport and histone modification. HPLC-based analysis of known SMs revealed significant alterations in the Δgcn5 mutant. While most SM genes were activated by Gcn5 activity, the biosynthesis of the pigment bikaverin was strongly increased upon GCN5 deletion underlining the diverse roles of the SAGA complex in F. fujikuroi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.13528 | DOI Listing |
Surg Neurol Int
December 2024
Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Iizuka, Japan.
Background: Omphalocele-exstrophy-imperforate anus-spinal defects (OEIS) complex is a rare, life-threatening congenital malformation primarily treated with abdominogenital repair. The optimal indication and timing of neurosurgical interventions for the associated spinal cord lesions remains insufficiently studied. We reviewed spinal dysraphism in OEIS to evaluate the best timing for neurosurgical intervention.
View Article and Find Full Text PDFSci Rep
January 2025
Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.
View Article and Find Full Text PDFLangenbecks Arch Surg
December 2024
Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
Background: Lateral pelvic lymph node dissection (LPND) is a challenging surgical technique with complex anatomy and narrow pelvic manipulation. The outcomes of robotic and laparoscopic surgery for LPND are still unclear.
Methods: We retrospectively reviewed 169 consecutive patients who underwent rectal cancer surgery with LPND between 2016 and 2023.
Methods Protoc
December 2024
Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecological malignancy, and there is still an unmet medical need to deepen basic research on its origins and mechanisms of progression. Patient-derived organoids of high-grade serous ovarian cancer (HGSOC-PDO) are a powerful model to study the complexity of ovarian cancer as they maintain, in vitro, the mutational profile and cellular architecture of the cancer tissue. Genetic modifications by lentiviral transduction allow novel insights into signaling pathways and the potential identification of biomarkers regarding the evolution of drug resistance.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.
In previous studies, we purified the DUB-module of the Drosophila SAGA complex and showed that a number of zinc proteins interact with it, including Aef1 and CG10543. In this work, we conducted a genome-wide study of the Aef1 and CG10543 proteins and showed that they are localized predominantly on the promoters of active genes. The binding sites of these proteins co-localize with the SAGA and dSWI/SNF chromatin modification and remodeling complexes, as well as with the ORC replication complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!