The regenerative potential of the peripheral nervous system (PNS) is widely known, but functional recovery, particularly in humans, is seldom complete. Therefore, it is necessary to resort to strategies that induce or potentiate the PNS regeneration. Our main objective was to test the effectiveness of Olfactory Ensheathing Cells (OEC) transplantation into a biodegradable conduit as a therapeutic strategy to improve the repair outcome after nerve injury. Sciatic nerve transection was performed in C57BL/6 mice; proximal and distal stumps of the nerve were sutured into the collagen conduit. Two groups were analyzed: DMEM (acellular grafts) and OEC (1×105/2μL). Locomotor function was assessed weekly by Sciatic Function Index (SFI) and Global Mobility Test (GMT). After eight weeks the sciatic nerve was dissected for morphological analysis. Our results showed that the OEC group exhibited many clusters of regenerated nerve fibers, a higher number of myelinated fibers and myelin area compared to DMEM group. The G-ratio analysis of the OEC group showed significantly more fibers on the most suitable sciatic nerve G-ratio index. Motor recovery was accelerated in the OEC group. These data provide evidence that the OEC therapy can improve sciatic nerve functional and morphological recovery and can be potentially translated to the clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2016.09.021 | DOI Listing |
Mol Neurobiol
January 2025
The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham).
View Article and Find Full Text PDFActa Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:
Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Electrical Engineering and ITEMS, University of Southern California, Los Angeles, California, USA.
As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!