A Portrait of the Human Organelle Proteome In Space and Time during Cytomegalovirus Infection.

Cell Syst

Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA. Electronic address:

Published: October 2016

The organelles within a eukaryotic host are manipulated by viruses to support successful virus replication and spread of infection, yet the global impact of viral infection on host organelles is poorly understood. Integrating microscopy, subcellular fractionation, mass spectrometry, and functional analyses, we conducted a cell-wide study of organelles in primary fibroblasts throughout the time course of human cytomegalovirus (HCMV) infection. We used label-free and isobaric-labeling proteomics to characterize nearly 4,000 host and 100 viral proteins, then classified their specific subcellular locations over time using machine learning. We observed a global reorganization of proteins across the secretory pathway, plasma membrane, and mitochondria, including reorganization and processing of lysosomal proteins into distinct subpopulations and translocations of individual proteins between organelles at specific time points. We also demonstrate that MYO18A, an unconventional myosin that translocates from the plasma membrane to the viral assembly complex, is necessary for efficient HCMV replication. This study provides a comprehensive resource for understanding host and virus biology during HCMV pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5083158PMC
http://dx.doi.org/10.1016/j.cels.2016.08.012DOI Listing

Publication Analysis

Top Keywords

plasma membrane
8
portrait human
4
human organelle
4
organelle proteome
4
proteome space
4
time
4
space time
4
time cytomegalovirus
4
infection
4
cytomegalovirus infection
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

CSPG4 overexpression implicates higher risks of recurrence and tumorigenesis after surgical intervention of vocal fold Leukoplakia.

Eur Arch Otorhinolaryngol

January 2025

ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 FenYang Road, Shanghai, 200031, China.

Background: Vocal fold leukoplakia (VFL), a precancerous lesion of the larynx, is characterized by white plaques on the vocal fold mucous membrane. Currently, there are no reliable biomarkers to predict the recurrence and malignant transformation of VFL. Considering chondroitin sulfate proteoglycan 4 (CSPG4) as a biomarker for malignant tumors such as laryngeal squamous cell carcinoma (LSCC), we conducted this cohort study to evaluate the prognostic influence of CSPG4 expression on VFL patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!