A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Process optimization for microcystin-LR degradation by Response Surface Methodology and mechanism analysis in gas-liquid hybrid discharge system. | LitMetric

Process optimization for microcystin-LR degradation by Response Surface Methodology and mechanism analysis in gas-liquid hybrid discharge system.

J Environ Manage

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China. Electronic address:

Published: December 2016

A gas-liquid hybrid discharge system was applied to microcystin-LR (MC-LR) degradation. MC-LR degradation was completed after 1 min under a pulsed high voltage of 16 kV, gas-liquid interface gap of 10 mm and oxygen flow rate of 160 L/h. The Box-Behnken Design was proposed in Response Surface Methodology to evaluate the influence of pulsed high voltage, electrode distance and oxygen flow rate on MC-LR removal efficiency. Multiple regression analysis, focused on multivariable factors, was employed and a reduced cubic model was developed. The ANOVA analysis shows that the model is significant and the model prediction on MC-LR removal was also validated with experimental data. The optimum conditions for the process are obtained at pulsed voltage of 16 kV, gas-liquid interface gap of 10 mm and oxygen flow rate of 120 L/h with ta removal efficiency of MC-LR of 96.6%. The addition of catalysts (TiO or Fe) in the gas-liquid hybrid discharge system was found to enhance the removal of MC-LR. The intermediates of MC-LR degradation were analyzed by liquid chromatography/mass spectrometry. The degradation pathway proposed envisaged the oxidation of hydroxyl radicals and ozone, and attack of high-energy electrons on the unsaturated double bonds of Adda and Mdha, with MC-LR finally decomposing into small molecular products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.09.030DOI Listing

Publication Analysis

Top Keywords

gas-liquid hybrid
12
hybrid discharge
12
discharge system
12
mc-lr degradation
12
oxygen flow
12
flow rate
12
response surface
8
surface methodology
8
mc-lr
8
pulsed high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!