Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK(+) tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib-ALK binding in a panel of ALK(+) cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC50 significantly correlated with Crizotinib-ALK binding. The suboptimal Crizotinib-ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib-NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib-ALK binding (correlated with a significant lowering of IC50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib-ALK binding. In conclusion, the Crizotinib-ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib-ALK binding is in turn dictated by the structure of ALK and some of its binding partners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027386 | PMC |
http://dx.doi.org/10.1038/srep33710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!