To assess nickel (Ni) toxicity and behavior in freshwater sediments, a large-scale laboratory and field sediment testing program was conducted. The program used an integrative testing strategy to generate scientifically based threshold values for Ni in sediments and to develop integrated equilibrium partitioning-based bioavailability models for assessing risks of Ni to benthic ecosystems. The sediment testing program was a multi-institutional collaboration that involved extensive laboratory testing, field validation of laboratory findings, characterization of Ni behavior in natural and laboratory conditions, and examination of solid phase Ni speciation in sediments. The laboratory testing initiative was conducted in 3 phases to satisfy the following objectives: 1) evaluate various methods for spiking sediments with Ni to optimize the relevance of sediment Ni exposures; 2) generate reliable ecotoxicity data by conducting standardized chronic ecotoxicity tests using 9 benthic species in sediments with low and high Ni binding capacity; and, 3) examine sediment bioavailability relationships by conducting chronic ecotoxicity testing in sediments that showed broad ranges of acid volatile sulfides, organic C, and Fe. A subset of 6 Ni-spiked sediments was deployed in the field to examine benthic colonization and community effects. The sediment testing program yielded a broad, high quality data set that was used to develop a Species Sensitivity Distribution for benthic organisms in various sediment types, a reasonable worst case predicted no-effect concentration for Ni in sediment (PNECsediment ), and predictive models for bioavailability and toxicity of Ni in freshwater sediments. A bioavailability-based approach was developed using the ecotoxicity data and bioavailability models generated through the research program. The tiered approach can be used to fulfill the outstanding obligations under the European Union (EU) Existing Substances Risk Assessment, EU Registration, Evaluation, Authorisation, and Regulation of Chemicals (REACH), and other global regulatory initiatives. Integr Environ Assess Manag 2016;12:735-746. © 2015 SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ieam.1720 | DOI Listing |
Wetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China. Electronic address:
To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl and Na were as high as 4.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!