Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure.

Aquat Toxicol

U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States; Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000, Denmark.

Published: November 2016

The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus handle the two Cu forms differently. However, longer-term exposures are suggested in order to clearly highlight differences in the subcellular distribution of these two Cu forms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2016.08.011DOI Listing

Publication Analysis

Top Keywords

subcellular distribution
16
copper oxide
8
sediment exposure
8
cuo nps
8
distribution forms
8
accumulated partitioned
8
subcellular fraction
8
subcellular
6
biodynamics copper
4
oxide nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!