In French Guiana, located on the northeastern coast of South America, bats of different species are very numerous. The infection of bats and their ticks with zoonotic bacteria, especially Rickettsia species, is so far unknown. In order to improve knowledge of these zoonotic pathogens in this French overseas department, the presence and diversity of tick-borne bacteria was investigated with molecular tools in bat ticks. In the beginning of 2013, 32 bats were caught in Saint-Jean-du-Maroni, an area close to the coast of French Guiana, and the ticks of these animals were collected. A total of 354 larvae of Argasidae soft ticks (Ornithodoros hasei) from 12 bats (Noctilio albiventris) were collected and 107 of them were analysed. DNA was extracted from the samples and quantitative real-time PCR was carried out to detect Rickettsia spp., Bartonella spp., Borrelia spp. and Coxiella burnetii. All tested samples were negative for Bartonella spp., Borrelia spp. and Coxiella burnetii. Rickettsia DNA was detected in 31 (28.9%) ticks. An almost entire (1118 base pairs long) sequence of the gltA gene was obtained after the amplification of some positive samples on conventional PCR and sequencing. A Bayesian tree was constructed using concatenated rrs, gltA, ompA, ompB, and gene D sequences. The study of characteristic sequences shows that this Rickettsia species is very close (98.3-99.8%) genetically to R. peacockii. Nevertheless, the comparative analysis of sequences obtained from gltA, ompA, ompB, rrs and gene D fragments demonstrated that this Rickettsia is different from the other members of the spotted fever group. The sequences of this new species were deposited in GenBank as Candidatus Rickettsia wissemanii. This is the first report showing the presence of nucleic acid of Rickettsia in Ornithodoros hasei ticks from South American bats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ttbdis.2016.09.004 | DOI Listing |
Front Microbiol
January 2025
Department of Epidemiology & Public Health, Central University of Tamil Nadu, Thiruvarur, India.
Introduction: The diagnosis and detection of pathogens such as and is a cause of major concern among the public health community. Unavailability of rapid, cost-effective diagnostic assays contributes to delayed diagnosis and timely treatment. Using the methodology of systematic reviewing and meta-analysis, the study aimed to synthesize and compare the diagnostic performances of all the available isothermal assays for the detection of classical rickettsial diseases.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs.
View Article and Find Full Text PDFZoonoses Public Health
January 2025
Department of Biology, University of Turku, Turku, Finland.
Introduction: Humans acquire tick-borne pathogens (TBPs) from infected ticks contacted during outdoor activities. Outdoor activity is at its highest in urban green spaces, where the presence of tick populations has increasingly been observed. Consequently, more insight into factors influencing the presence of ticks therein is needed.
View Article and Find Full Text PDFMed Vet Entomol
January 2025
Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
Ticks continue to invade new regions spreading pathogens of zoonotic and veterinary importance. Diverse tick species have been reported in Ghana due to the continuous trade of livestock. In this study, ticks were collected from cattle in three sites within Southern Ghana.
View Article and Find Full Text PDFParasit Vectors
January 2025
Veterinary and Animal Science School, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil.
Background: Brazilian spotted fever is a tick-borne disease caused by the bacterium Rickettsia rickettsii, whose main vector in Brazil is the tick Amblyomma sculptum. Amplifying hosts are essential for the perpetuation of this bacterium in the tick population as they can be sources of infection during bacteremic periods. Recent studies demonstrated the ability of suids (Sus scrofa) to sustain populations of A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!