Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026984 | PMC |
http://dx.doi.org/10.1186/s11671-016-1618-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!