Fungal partner shifts during the evolution of mycoheterotrophy in Neottia.

Am J Bot

Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan.

Published: September 2016

Premise Of The Study: Few previous studies have examined how mycobionts change during the evolution from autotrophy to mycoheterotrophy based on phylogenetic hypotheses. Neottia (Orchidaceae) comprises leafy species that are autotrophic and related leafless mycoheterotrophic species, and the phylogenetic relationships among them have been clarified. Accordingly, Neottia is a suitable taxon for investigating the question above. Here we clarified the diversity of mycobionts in Neottia plants and elucidated changes in the character of symbiotic associations during the evolution of mycoheterotrophy.

Methods: We sequenced the internal transcribed spacer (ITS) regions of nuclear ribosomal (nr) DNA for mycobionts of Neottia plants. Furthermore, we selected one representative DNA sample from each fungal operational taxonomic unit (OTU) and used it to amplify the large subunit (LSU) nrDNA sequences. Phylogenetic analyses of Sebacinales (basidiomycetes), the dominant mycobiont of Neottia, were conducted and sample-based rarefaction curves generated for the observed mycobiont richness on each OTU.

Key Results: Leafy and leafless species in Neottia were associated with Sebacinales Group B and Sebacinales Group A, respectively. The composition and specificity level of fungal partners varied among Neottia species.

Conclusions: Fungal partner composition and specificity level changed with speciation in both leafy and leafless Neottia species. In particular, mycorrhizal associations likely shifted from Sebacinales Group B to Group A during the evolution from autotrophy to mycoheterotrophy. Partner shifts to Sebacinales Group A have also been reported in the evolution of mycoheterotrophy of other plant groups, suggesting that convergence to this fungal group occurs in association with the evolution of mycoheterotrophy.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.1600063DOI Listing

Publication Analysis

Top Keywords

sebacinales group
16
evolution mycoheterotrophy
12
neottia
9
fungal partner
8
partner shifts
8
evolution autotrophy
8
autotrophy mycoheterotrophy
8
mycobionts neottia
8
neottia plants
8
leafy leafless
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!