Purpose: The main goals of this study were to investigate the expression of anti-Müllerian hormone (AMH) and its receptor (AMHR2) during follicular development in primates, and to evaluate the potential of AMH as a biomarker for follicle growth and oocyte maturation in vitro.
Methods: The mRNA and protein expression of AMH and AMHR2 were determined using isolated follicles and ovarian sections from rhesus macaques (n = 4) by real-time PCR and immunohistochemistry, respectively. Isolated secondary follicles were cultured individually. Follicle growth and media AMH concentrations were assessed by ELISA. The mRNA expression profiles, obtained from RNA sequencing, of in vitro- and in vivo-developed antral follicles were compared. Secondary follicles from additional animals (n = 35) were cultured. Follicle growth, oocyte maturation, and media AMH concentrations were evaluated for forecasting follicular development in vitro by AMH levels.
Results: AMH immunostaining was heterogeneous in the population of preantral follicles that were also stained for AMHR2. The mRNA expression profiles were comparable between in vivo- and in vitro-developed follicles. AMH levels produced by growing follicles were higher than those of nongrowing follicles in culture. With a cutoff value of 1.40 ng/ml, 85 % of nongrowing follicles could be identified while eliminating only 5 % of growing follicles. Growing follicles that generated metaphase II-stage oocytes secreted greater amounts of AMH than did those yielding immature germinal vesicle-stage oocytes.
Conclusions: AMH, co-expressed with AMHR2, was produced heterogeneously by preantral follicles in macaques with levels correlated positively with follicle growth and oocyte maturation. AMH may serve as a biomarker for primate follicular development in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234704 | PMC |
http://dx.doi.org/10.1007/s10815-016-0804-3 | DOI Listing |
J Clin Med
December 2024
Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China.
Pubertal gynecomastia (PG) is a common condition characterized by the abnormal development and hyperplasia of unilateral or bilateral breast tissue in adolescent males, affecting up to 50% of appropriately aged adolescents and exhibiting rising prevalence over recent years. The etiology of PG is multifaceted, encompassing physiological, pharmacological, and pathological factors. This narrative review synthesizes evidence from a comprehensive selection of peer-reviewed literature, including observational studies, clinical trials, systematic reviews, and case reports, to explore the pivotal role of endocrine hormones in the pathogenesis of PG.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea.
We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Dermatology and Venereology Department, Faculty of Medicine (Girls), Al-Azhar University, 53, New Cairo, 3rd Zone Fifth, Settlement, Cairo, Egypt.
Androgenic alopecia (AGA) is the most common form of non-scarring hair loss, characterized by marked hair follicle miniaturization. AGA is a challenging skin condition with limited treatment results. Laser light can promote hair growth at specific wavelengths.
View Article and Find Full Text PDFCells
December 2024
Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!