Gene therapy targeting mitochondrial pathway in Parkinson's disease.

J Neural Transm (Vienna)

Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.

Published: February 2017

Parkinson's disease (PD) presents a relative selective localization of pathology to substantia nigra and well-defined motor symptoms caused by dopaminergic degeneration that makes it an ideal target for gene therapy. Parallel progress in viral vector systems enables the delivery of therapeutic genes directly into brain with reasonable safety along with sustained transgene expression. To date, gene therapy for PD that has reached clinical trial evaluation is mainly based on symptomatic approach that involves enzyme replacement strategy and restorative approach that depends on the addition of neurotrophic factors. Mitochondrial dysregulation, such as reduced complex I activity, increased mitochondria-derived reactive oxygen species (ROS) production, ROS-mediated mitochondrial DNA damage, bioenergetic failure, and perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Many of mutated genes linked to familial forms of PD affect these mitochondrial features. In this review, we discuss the recent progress that has been made in preclinical development of gene therapy targeting the mitochondrial pathway as disease modifying approach for PD. This review focuses on the potential therapeutic efficacy of candidate genes, including Parkin, PINK1, alpha synuclein, PGC-1 alpha, and anti-apoptotic molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-016-1616-4DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
therapy targeting
8
targeting mitochondrial
8
mitochondrial pathway
8
parkinson's disease
8
mitochondrial
6
gene
4
pathway parkinson's
4
disease parkinson's
4
disease presents
4

Similar Publications

Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.

Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.

View Article and Find Full Text PDF

Purpose: Aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) are the most common adverse effects experienced by breast cancer patients. This scoping review aimed to systematically synthesize the predictors/risk factors and outcomes of AIMSS in patients with early-stage breast cancer.

Methods: A systematic search was conducted in PubMed, Web of Science, EMBASE, CINAHL, and the China National Knowledge Internet (CNKI) from inception to December 2024 following the scoping review framework proposed by Arksey and O'Malley (2005).

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis.

View Article and Find Full Text PDF

Platinum drugs upregulate CXCR4 and PD-L1 expression via ROS-dependent pathways, with implications for novel combined treatment in gastric cancer.

J Pathol Clin Res

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, PR China.

CXC chemokine receptor 4 (CXCR4) and programmed cell death-ligand 1 (PD-L1) are two critical molecules involved in the tumor immune microenvironment. However, the impact of platinum drugs, such as cisplatin, on CXCR4 or PD-L1 expression and the underlying mechanisms in gastric cancer (GC) remain unknown. Moreover, the correlation between their expression levels in GC remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!