Computational modelling of local calcium ions release from calcium phosphate-based scaffolds.

Biomech Model Mechanobiol

Biomechanics Research Unit, GIGA In Silico Medicine, U. Liège, Chemin des Chevreuils 1, B52/3, 4000, Liège, Belgium.

Published: April 2017

A variety of natural or synthetic calcium phosphate (CaP)-based scaffolds are currently produced for dental and orthopaedic applications. These scaffolds have been shown to stimulate bone formation due to their biocompatibility, osteoconductivity and osteoinductivity. The release of the [Formula: see text] ions from these scaffolds is of great interest in light of the aforementioned properties. It can depend on a number of biophysicochemical phenomena such as dissolution, diffusion and degradation, which in turn depend on specific scaffold characteristics such as composition and morphology. Achieving an optimal release profile can be challenging when relying on traditional experimental work alone. Mathematical modelling can complement experimentation. In this study, the in vitro dissolution behaviour of four CaP-based scaffold types was investigated experimentally. Subsequently, a mechanistic finite element method model based on biophysicochemical phenomena and specific scaffold characteristics was developed to predict the experimentally observed behaviour. Before the model could be used for local [Formula: see text] ions release predictions, certain parameters such as dissolution constant ([Formula: see text]) and degradation constant ([Formula: see text]) for each type of scaffold were determined by calibrating the model to the in vitro dissolution data. The resulting model showed to yield release characteristics in satisfactory agreement with those observed experimentally. This suggests that the mathematical model can be used to investigate the local [Formula: see text] ions release from CaP-based scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-016-0827-9DOI Listing

Publication Analysis

Top Keywords

[formula text]
20
ions release
12
text] ions
12
cap-based scaffolds
8
biophysicochemical phenomena
8
specific scaffold
8
scaffold characteristics
8
vitro dissolution
8
local [formula
8
constant [formula
8

Similar Publications

On analysis of phthalocyanine network through statistical method.

Sci Rep

December 2024

Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.

Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.

View Article and Find Full Text PDF

This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.

View Article and Find Full Text PDF

It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.

View Article and Find Full Text PDF

This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!