This study introduces a new methodology to synthesize magnetic biochar/Fe3O4 nanocomposites (M-BC) from marine macroalgae using a facile electro-magnetization technique. M-BC was prepared by stainless steel electrode-based electrochemical system, followed by pyrolysis. Physical and chemical analyses revealed that the porosity and magnetic properties were simultaneously improved via the electro-magnetization process, which enabled not only higher adsorption performance, but also easier separation/recovery from aqueous media at post-adsorption stage using a bar magnet. The adsorption equilibrium studies reveal that the Sips model satisfactorily predicts the adsorption capacity, which found to be 190, 297, and 382mgg(-1) at 10, 20, and 30°C, respectively. The overall findings indicate that one-step electro-magnetization technique can be effectively utilized for the fabrication of biochar with concurrent acquisition of porosity and magnetism, which can bring about new directions in the practical use of adsorption process in environment remediation and mitigate crises originating from it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2016.09.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!