Mammalian KIF3AB is an N-terminal processive kinesin-2 that is best known for its roles in intracellular transport. There has been significant interest in KIF3AB to define the key principles that underlie its processivity but also to define the mechanistic basis of its sensitivity to force. In this study, the kinetics for entry into the processive run were quantified. The results show for KIF3AB that the kinetics of microtubule association at 7 μm s is less than the rates observed for KIF3AA at 13 μm s or KIF3BB at 11.9 μm s ADP release after microtubule association for KIF3AB is 33 s and is significantly slower than ADP release from homodimeric KIF3AA and KIF3BB, which reach 80-90 s To explore the interhead communication implied by the rate differences at these first steps, we compared the kinetics of KIF3AB microtubule association followed by ADP release with the kinetics for mixtures of KIF3AA plus KIF3BB. Surprisingly, the kinetics of KIF3AB are not equivalent to any of the mixtures of KIF3AA + KIF3BB. In fact, the transients for each of the mixtures overlay the transients for KIF3AA and KIF3BB. These results reveal that intermolecular communication within the KIF3AB heterodimer modulates entry into the processive run, and the results suggest that it is the high rate of microtubule association that drives rebinding to the microtubule after force-dependent motor detachment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087741 | PMC |
http://dx.doi.org/10.1074/jbc.M116.752196 | DOI Listing |
Foods
January 2025
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35-225 Rzeszów, Poland.
Garlic ( L.) is one of the oldest known useful plants, valued for thousands of years. This plant contains many biologically active compounds, including polyphenols, sterols, cysteine-sulfoxides, carbohydrates, proteins, and amino acids.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.
View Article and Find Full Text PDFPlant Cell
January 2025
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants' challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!