Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens.

Plant Cell Rep

Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.

Published: December 2016

We described identification, expression, subcellular localization, and functions of genes that encode fatty acid desaturase enzymes in Perilla frutescens var. frutescens. Perilla (Perilla frutescens var. frutescens) seeds contain approximately 40 % of oil, of which α-linolenic acid (18:3) comprise more than 60 % in seed oil and 56 % of total fatty acids (FAs) in leaf, respectively. In perilla, endoplasmic reticulum (ER)-localized and chloroplast-localized ω-3 FA desaturase genes (PfrFAD3 and PfrFAD7, respectively) have already been reported, however, microsomal oleate 12-desaturase gene (PfrFAD2) has not yet. Here, four perilla FA desaturase genes, PfrFAD2-1, PfrFAD2-2, PfrFAD3-2 and PfrFAD7-2, were newly identified and characterized using random amplification of complementary DNA ends and sequence data from RNAseq analysis, respectively. According to the data of transcriptome and gene cloning, perilla expresses two PfrFAD2 and PfrFAD3 genes, respectively, coding for proteins that possess three histidine boxes, transmembrane domains, and an ER retrieval motif at its C-terminal, and two chloroplast-localized ω-3 FA desaturase genes, PfrFAD7-1 and PfrFAD7-2. Arabidopsis protoplasts transformed with perilla genes fused to green fluorescence protein gene demonstrated that PfrFAD2-1 and PfrFAD3-2 were localized in the ER, and PfrFAD7-1 and PfrFAD7-2 were localized in the chloroplasts. PfrFAD2 and perilla ω-3 FA desaturases were functional in budding yeast (Saccharomyces cerevisiae) indicated by the presence of 18:2 and 16:2 in yeast harboring the PfrFAD2 gene. 18:2 supplementation of yeast harboring ω-3 FA desaturase gene led to the production of 18:3. Therefore, perilla expresses two functional FAD2 and FAD3 genes, and two chloroplast-localized ω-3 FA desaturase genes, which support an evidence that P. frutescens cultivar is allotetraploid plant.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-016-2053-4DOI Listing

Publication Analysis

Top Keywords

desaturase genes
20
ω-3 desaturase
16
perilla frutescens
12
frutescens var
12
var frutescens
12
chloroplast-localized ω-3
12
perilla
10
genes
9
oleate 12-desaturase
8
fatty acid
8

Similar Publications

Mutants with simultaneous germline mutations were obtained in all three F5H genes and all three FAD2 genes (one to eleven mutated alleles) in order to improve the feed value of the seed meal and the fatty acid composition of the seed oil. In mutants with multiple mutated F5H alleles, sinapine in seed meal was reduced by up to 100%, accompanied by a sharp reduction in the S-monolignol content of lignin without causing lodging or stem break. A lower S-lignin monomer content in stems can contribute to improved stem degradability allowing new uses of stems.

View Article and Find Full Text PDF

Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.

View Article and Find Full Text PDF

Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes.

View Article and Find Full Text PDF

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!