The effects of pressure on a quantum spin liquid are investigated in an organic Mott insulator κ-(ET)_{2}Ag_{2}(CN)_{3} with a spin-1/2 triangular lattice. The application of negative chemical pressure to κ-(ET)_{2}Cu_{2}(CN)_{3}, which is a well-known sister Mott insulator, allows for extensive tuning of antiferromagnetic exchange coupling, with J/k_{B}=175-310  K, under hydrostatic pressure. Based on ^{13}C nuclear magnetic resonance measurements under pressure, we uncover universal scaling in the static and dynamic spin susceptibilities down to low temperatures ∼0.1k_{B}T/J. The persistent fluctuations and residual specific heat coefficient are consistent with the presence of gapless low-lying excitations. Our results thus demonstrate the fundamental finite-temperature properties of a quantum spin liquid in a wide parameter range.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.107203DOI Listing

Publication Analysis

Top Keywords

quantum spin
12
spin liquid
12
exchange coupling
8
triangular lattice
8
mott insulator
8
pressure-tuned exchange
4
coupling quantum
4
spin
4
liquid molecular
4
molecular triangular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!