Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.103002DOI Listing

Publication Analysis

Top Keywords

photon energy
20
energy deposition
8
single ionization
8
ionization multielectron
8
multielectron molecules
8
electron-nuclear sharing
8
energy
6
photon
5
deposition strong-field
4
strong-field single
4

Similar Publications

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Advanced Imaging of Type 2 Spinal CSF Leaks with Ultrahigh-Resolution Cone-Beam CT Myelography.

AJNR Am J Neuroradiol

January 2025

From Department of Neuroradiology (Niklas Lützen, Charlotte Zander, Horst Urbach), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany and Department of Neurosurgery (Jürgen Beck, Florian Volz, Katharina Wolf, Amir El Rahal), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.

Type 2 CSF leaks are spinal lateral dural tears, causing spontaneous intracranial hypotension (SIH). They may be visualized with digital subtraction myelography (DSM), cone-beam CT (CBCT) myelography, energy-integrating detector or photon-counting CT myelography. A recently introduced ultrahigh-resolution cone-beam CT (UHR-CBCT) myelography has shown beneficial visualization of CSF-venous fistula, another cause of SIH.

View Article and Find Full Text PDF

Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.

View Article and Find Full Text PDF

Direct Observation of All-Flat Bands Phononic Metamaterials.

Phys Rev Lett

December 2024

University of Connecticut, University of Connecticut, School of Mechanical, Aerospace, and Manufacturing Engineering, Storrs, Connecticut 06269, USA and Institute of Materials Science, Storrs, Connecticut 06269, USA.

Flat lines within a band structure represent constant frequency bands for all momentum values (i.e., they maintain zero group velocity for all wave numbers).

View Article and Find Full Text PDF

Using tremendous photon statistics gained with the stray light aperture of the NuSTAR telescope over 11 years of operation, we set strong limits on the emission of close to monochromatic photons from the radiative decays of putative dark matter sterile neutrinos in the Milky Way. In the energy range of 3-20 keV covered by the NuSTAR, the obtained limits reach the bottom edge of theoretical predictions of realistic models where sterile neutrinos are produced in the early Universe. Only a small region is left to explore, if the sterile neutrinos form the entire dark matter component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!