Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

Phys Rev Lett

Astronomical Observatory, Warsaw University, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland.

Published: September 2016

We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.101102DOI Listing

Publication Analysis

Top Keywords

black holes
12
black hole
12
kerr black
8
black
6
spectroscopy kerr
4
holes earth-
4
earth- space-based
4
space-based interferometers
4
interferometers estimate
4
estimate potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!