The conductance of molecular bridges tends to be overestimated by computational studies in comparison to measured values. While this well-established trend may be related to difficulties for achieving robust bridges, the employed computational scheme can also contribute to this tendency. In particular, caveats of the traditional functionals employed in first-principles-based calculations can lead to discrepancies reflected in exaggerated conductance. Here, we show that by employing a range-separated hybrid functional the calculated values are within the same order as the measured conductance for all four considered cases. On the other hand, with B3LYP, which is a widely used functional, the calculated values greatly overestimate the conductance (by about 1-2 orders of magnitude). The improved description of the conductance with a RSH functional builds on achieving a physically meaningful treatment of the quasi particles associated with the frontier orbitals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b02241DOI Listing

Publication Analysis

Top Keywords

range-separated hybrid
8
hybrid functional
8
functional calculated
8
calculated values
8
conductance
6
achieving predictive
4
predictive description
4
description molecular
4
molecular conductance
4
conductance range-separated
4

Similar Publications

We developed a general framework for hybrid quantum-classical computing of molecular and periodic embedding approaches based on an orbital space separation of the fragment and environment degrees of freedom. We demonstrate its potential by presenting a specific implementation of periodic range-separated DFT coupled to a quantum circuit ansatz, whereby the variational quantum eigensolver and the quantum equation-of-motion algorithm are used to obtain the low-lying spectrum of the embedded fragment Hamiltonian. The application of this scheme to study localized electronic states in materials is showcased through the accurate prediction of the optical properties of the neutral oxygen vacancy in magnesium oxide (MgO).

View Article and Find Full Text PDF

Computing Excited States of Very Large Systems with Range-Separated Hybrid Functionals and the Exact Integral Simplified Time-Dependent Density Functional Theory (XsTD-DFT).

J Phys Chem Lett

December 2024

Theoretical Chemistry Group, Molecular Chemistry, Materials and Catalysis Division (MOST), Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.

Simplified quantum chemistry (sQC) methods can routinely compute excited states for very large systems in an "all-atom" fashion. They are viable alternatives to regular multiscale schemes. sQC methods have the advantage of accounting explicitly for all of the environment at a quantum mechanical (QM) level.

View Article and Find Full Text PDF

Combining real-space and local range separation-The MH24 locally range-separated local hybrid functional.

J Chem Phys

December 2024

Technische Universität Braunschweig, Institut für Physikalische und Theoretische Chemie, Gaussstraße 17, D-38106 Braunschweig, Germany.

In this work, the development of a new general-purpose exchange-correlation hybrid functional based on the recent locally range-separated local hybrid approach is presented. In particular, the new functional, denoted as MH24, combines a non-empirical treatment of the admixture of locally range-separated long-range exact exchange with a new real-space separation approach for the real-space exact-exchange admixture governed by the local mixing function (LMF) and a new empirical LYP-based approach for the correlation functional to enable a flexible description of same- and opposite-spin correlation effects. The nine empirical parameters of the MH24 model have been optimized using a state-of-the-art super-self-consistent-field approach, which exploits the sensitivity of specific properties, such as core ionization potentials, electron affinities, and atomization energies, to the exact-exchange admixture in specific regions in real space and the separation of the LMF into a core, valence, and asymptotic part.

View Article and Find Full Text PDF

A density functional theory framework is developed to study electronic excited states affected by an anisotropic dielectric environment. In particular, an anisotropic dielectric screened range-separated hybrid (SRSH[r]) functional is defined and combined with an anisotropic polarizable continuum model (PCM) implemented through a generalized Poisson equation solver. We develop the SRSH-PCM(r) approach and use it to quantify the effect of anisotropy on an excited charge transfer (CT) state energy.

View Article and Find Full Text PDF

Charge Transfer (CT) molecular complexes have recently received much attention in a broad variety of fields. The time-dependent density functional theory (TDDFT), which is essential for studying CT complexes, is a well-established tool to study the excited states of relatively large molecular systems. However, when dealing with donor-acceptor molecules with CT characteristics, TDDFT calculations based on standard functionals can severely underestimate the excitation energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!