Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (SrBa)MgSiO:Eu,Dy (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelength while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (SrBa)MgSiOEu,Dy and the green-emitting SrAlO:Eu,Dy in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b10303DOI Listing

Publication Analysis

Top Keywords

solid solution
12
point-of-care diagnostics
8
optical reporters
8
optimizing blue
4
persistent
4
blue persistent
4
persistent luminescence
4
luminescence srbamgsioeudy
4
srbamgsioeudy solid
4
solution point-of-care
4

Similar Publications

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment.

View Article and Find Full Text PDF

In 2001, Tang's team discovered a unique type of luminogens with substantial enhanced fluorescence upon aggregation and introduced the concept of "aggregation-induced emission (AIE)". Unlike conventional fluorescent materials, AIE luminogens (AIEgens) emit weak or no fluorescence in solution but become highly fluorescent in aggregated or solid states, due to a mechanism known as restriction of intramolecular motions (RIM). Initially considered a purely inorganic chemical phenomenon, AIE was later applied in biomedicine to improve the sensitivity of immunoassays.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

The redox aspects of lithium-ion batteries.

Energy Environ Sci

December 2024

Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland

This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!