EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures.

Comput Intell Neurosci

Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Viale del Risorgimento, 40136 Bologna, Italy.

Published: February 2017

Motor imagery is a common control strategy in EEG-based brain-computer interfaces (BCIs). However, voluntary control of sensorimotor (SMR) rhythms by imagining a movement can be skilful and unintuitive and usually requires a varying amount of user training. To boost the training process, a whole class of BCI systems have been proposed, providing feedback as early as possible while continuously adapting the underlying classifier model. The present work describes a cue-paced, EEG-based BCI system using motor imagery that falls within the category of the previously mentioned ones. Specifically, our adaptive strategy includes a simple scheme based on a common spatial pattern (CSP) method and support vector machine (SVM) classification. The system's efficacy was proved by online testing on 10 healthy participants. In addition, we suggest some features we implemented to improve a system's "flexibility" and "customizability," namely, (i) a flexible training session, (ii) an unbalancing in the training conditions, and (iii) the use of adaptive thresholds when giving feedback.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011245PMC
http://dx.doi.org/10.1155/2016/4562601DOI Listing

Publication Analysis

Top Keywords

eeg-based bci
8
bci system
8
motor imagery
8
system adaptive
4
adaptive features
4
features extraction
4
extraction classification
4
classification procedures
4
procedures motor
4
imagery common
4

Similar Publications

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

Sci Rep

December 2024

School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.

Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.

View Article and Find Full Text PDF

In recent years, significant advancements have been made in the field of brain-computer interfaces (BCIs), particularly in the area of emotion recognition using EEG signals. The majority of earlier research in this field has missed the spatial-temporal characteristics of EEG signals, which are critical for accurate emotion recognition. In this study, a novel approach is presented for classifying emotions into three categories, positive, negative, and neutral, using a custom-collected dataset.

View Article and Find Full Text PDF

Numerous individuals encounter challenges in verbal communication due to various factors, including physical disabilities, neurological disorders, and strokes. In response to this pressing need, technology has actively pursued solutions to bridge the communication gap, recognizing the inherent difficulties faced in verbal communication, particularly in contexts where traditional methods may be inadequate. Electroencephalogram (EEG) has emerged as a primary non-invasive method for measuring brain activity, offering valuable insights from a cognitive neurodevelopmental perspective.

View Article and Find Full Text PDF

This perspective considers the novel concept of olfactory neurofeedback (O-NFB) within the framework of brain-computer interfaces (BCIs), where olfactory stimuli are integrated in various BCI control loops. In particular, electroencephalography (EEG)-based O-NFB systems are capable of incorporating different components of complex olfactory processing - from simple discrimination tasks to using olfactory stimuli for rehabilitation of neurological disorders. In our own work, EEG theta and alpha rhythms were probed as control variables for O-NFB.

View Article and Find Full Text PDF

This systematic literature review explores the intersection of neuroscience and deep learning in the context of decoding motor imagery Electroencephalogram (EEG) signals to enhance the quality of life for individuals with motor disabilities. Currently, the most used non-invasive method for measuring brain activity is the EEG, due to its high temporal resolution, user-friendliness, and safety. A Brain Computer Interface (BCI) framework can be made using these signals which can provide a new communication channel to people that are suffering from motor disabilities or other neurological disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!