Inner ear lesion and the differential roles of hypoxia and hypercarbia in triggering active movements: Potential implication for the Sudden Infant Death Syndrome.

Neuroscience

Department of Anesthesia, Seattle Children's Hospital, 4800 Sandpoint Way NE, Seattle, WA 98105, United States; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, United States; Department of Anesthesia, University of Washington, Seattle, WA, United States. Electronic address:

Published: November 2016

Infants that succumb to Sudden Infant Death Syndrome (SIDS) have been identified with inner ear dysfunction (IED) at birth and on autopsy. We previously investigated whether IED could play a mechanistic role in SIDS. We discovered that animals with IED displayed significant suppression of movement arousal to a hypoxic-hypercarbic gas mixture under light anesthesia. In the current study we investigated the role of each gas in triggering movements and the response to hypercarbia during natural sleep without anesthesia. Seventeen-day-old CD-1 mice received intra-tympanic gentamicin (IT-Gent) injections to precipitate IED. The movement response to hypercarbia, hypoxia and hypoxia-hypercarbia was compared to controls under light anesthesia. Hypercarbia did not stimulate vigorous movements in any animals under either sleep condition. Hypoxia triggered vigorous movements in controls (p<0.05) and a decreased response in IT-Gent animals under light anesthesia. This contrasted with combined hypoxia-hypercarbia, in which IT-Gent animals displaced significantly suppressed movements compared to controls (p<0.05). Our findings portray that a degree of intact inner ear function is necessary for instigating the movement response. Additionally, hypoxia is the trigger for the movement response while carbon dioxide (CO) suppresses it. The finding that carbon dioxide did not stimulate movement during natural sleep is an important finding. This contrasts with other studies that have identified hypercarbia as an arousal stimulus with EEG. Further studies are warranted to evaluate the precise role of the inner ear in the movement response and potential association with SIDS. The early detection of IED in SIDS predisposed cases could be invaluable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.08.054DOI Listing

Publication Analysis

Top Keywords

inner ear
8
sudden infant
8
infant death
8
death syndrome
8
light anesthesia
8
response hypercarbia
8
vigorous movements
8
ear lesion
4
lesion differential
4
differential roles
4

Similar Publications

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

[Application of 3D-Flair MRI and vestibular function assessment in profound sudden sensorineural hearing loss patients].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

January 2025

Department of Otology Medicine, Shandong Provincial ENT Hospital, Shandong University, Jinan250022, China.

To analyse the 3D-Flair MRI manifestations of the inner ear, vestibular function status, and their correlation with hearing treatment outcomes in patients with severe sudden sensorineural hearing loss (SSNHL), and to explore potential prognostic indicators for sudden deafness. The clinical data of adult patients with unilateral profound sudden sensorineural hearing loss were retrospectively analyzed in Otorhinolaryngology Department of Shandong Provincial ENT Hospital from March 2018 to August 2020. Patients were categorized based on the results of their inner ear 3D-Flair MRI into two groups: the normal MRI group and the abnormal MRI group.

View Article and Find Full Text PDF

Purpose: To compare vestibulo-ocular reflex (VOR) gain values, gain symmetry between the semicircular canals (SCCs), and saccadic parameters in patients with a nosological diagnosis of Ménière's disease (MD) and vestibular migraine (VM).

Methods: Observational, descriptive, cross-sectional, retrospective study, approved by the Research Ethics Committee, under evaluation report number 4.462.

View Article and Find Full Text PDF

The cochlea phenotypically differs from the vestibule in the Gfi1 mouse.

Dev Dyn

January 2025

Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China.

Background: Previous studies with Gfi1-mutated lines have shown that Gfi1 is essential for hair cell maturation and survival.

Results: We analyzed the phenotype of another Gfi1-mutated line Gfi1 in the inner ears of neonates at P5-7 and found that the cochlea phenotypically differed from the vestibule in the Gfi1 mouse. Specifically, there was a marked reduction in hair cells in the cochlea, which was characterized by greater reductions in the outer hair cells but far less reductions (mainly in the basal turn) in the inner hair cells, whereas the vestibular hair cells remained unaffected.

View Article and Find Full Text PDF

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!