New technologies are redefining how plant biology will meet societal challenges in health, nutrition, agriculture, and energy. Rapid and inexpensive genome and transcriptome sequencing is being exploited to discover biochemical pathways that provide tools needed for synthetic biology in both plant and microbial systems. Metabolite detection at the cellular and subcellular levels is complementing gene sequencing for pathway discovery and metabolic engineering. The crafting of plant and microbial metabolism for the synthetic biology platforms of tomorrow will require precise gene editing and delivery of entire complex pathways. Plants sustain life and are key to discovery and development of new medicines and agricultural resources; increased research and training in plant science will accelerate efforts to harness the chemical wealth of the plant kingdom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aad2062 | DOI Listing |
Microb Pathog
January 2025
High School of Technology Laayoune, Ibn Zohr University, Morocco.
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFNature
January 2025
Department of Genetics, Stanford University, Stanford, CA, USA.
Sci Rep
January 2025
Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. Electronic address:
The major phytochemicals in the roots of Cudrania tricuspidata are prenylated xanthones, exhibiting significant structural diversity and bioactive properties, such as anti-inflammatory, antioxidative, and antitumor effects. The biosynthetic pathways of these compounds have not yet been resolved, limiting their production through synthetic biology. In this study, benzoyl-coenzyme A (CoA) ligase (BZL), benzophenone synthase (BPS), and benzophenone 3'-hydroxylase (B3'H) transcripts involved in the biosynthesis of xanthone were cloned and characterized from C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!