Background: Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production.
Results: Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g.
Conclusions: We showed that P. pastoris has a great potential as a fermentative organism for producing L-lactic acid using glycerol as the carbon source at limited oxygenation conditions (below 0.05 % DO in the bioreactor). The best strain had both the LDHb and the homologous lactate transporter encoding genes expressed, and reached a titer 1.5 times higher than the strain with the S. cerevisiae transporter. Finally, it was also shown that increased lactic acid production was concomitant to reduction of acetic acid formation by half.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025603 | PMC |
http://dx.doi.org/10.1186/s12934-016-0557-9 | DOI Listing |
Int J Biol Macromol
January 2025
College of Engineering, China Agricultural University, Beijing 100083, China. Electronic address:
Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.
View Article and Find Full Text PDFAnnu Rev Food Sci Technol
January 2025
1Department of Food Science and Technology, University of California, Davis, Davis, California, USA; email:
Lacto-fermented fruits and vegetables (FVs) such as kimchi, sauerkraut, and fermented olives and nonalcoholic juices have a long history as dietary staples. Herein, the production steps and microbial ecology of lacto-fermented FVs are discussed alongside findings from human and laboratory studies investigating the health benefits of these foods. Lacto-fermented FVs are enriched in bioactive compounds, including lactic and acetic acids, phenolic compounds, amino acid derivatives such as indole-3-lactic acid, phenyl-lactic acid, γ-aminobutyric acid, and bacteriocins, and beneficial live microbes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.
View Article and Find Full Text PDFThe objective of this study was to investigate the effect of the () SS18-50 (an isolate with favorable probiotic properties following space traveling) on dextran sulfate sodium (DSS)-induced colitis in mice. Male ICR mice were randomly assigned to one of six groups: a control group, a model group, and four intervention groups comprising the isolate (SS18-50-L and SS18-50-H) and the wild type (GS18-L and GS18-H) strains. The model group and the intervention groups were administered a 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!