Novel blood-brain barrier-permeable spin probe for in vivo electron paramagnetic resonance imaging.

Bioorg Med Chem Lett

Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. Electronic address:

Published: October 2016

A novel blood-brain barrier (BBB)-permeable compound 10 was discovered, wherein the nitroxide moiety was linked to a nicotine acetylcholine receptor ligand. It was applied as a probe for electron paramagnetic resonance (EPR) imaging of the mouse brain. The results demonstrated that the newly synthesized compound 10 exhibited BBB permeability. These findings provide an essential discovery for in vivo EPR imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.09.010DOI Listing

Publication Analysis

Top Keywords

novel blood-brain
8
electron paramagnetic
8
paramagnetic resonance
8
epr imaging
8
blood-brain barrier-permeable
4
barrier-permeable spin
4
spin probe
4
probe vivo
4
vivo electron
4
resonance imaging
4

Similar Publications

QSP Modeling Shows Pathological Synergism Between Insulin Resistance and Amyloid-Beta Exposure in Upregulating VCAM1 Expression at the BBB Endothelium.

CPT Pharmacometrics Syst Pharmacol

December 2024

Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA.

Type 2 diabetes mellitus (T2DM), characterized by insulin resistance, is closely associated with Alzheimer's disease (AD). Cerebrovascular dysfunction is manifested in both T2DM and AD, and is often considered as a pathological link between the two diseases. Insulin signaling regulates critical functions of the blood-brain barrier (BBB), and endothelial insulin resistance could lead to BBB dysfunction, aggravating AD pathology.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) is a neurological disease characterized by high disability and mortality rates. Tomatidine, a natural steroid alkaloid, has been evidenced to have neuroprotective properties. However, the underlying mechanisms of tomatidine in treating SCI remain ambiguous.

View Article and Find Full Text PDF

Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range.

View Article and Find Full Text PDF

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

Enhancing glioblastoma therapy via intranasal administration of highly potent cell-penetrating peptide decorated nanoparticles.

J Control Release

December 2024

Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Glioblastoma multiforme (GBM) is a devastating primary tumor of the central nervous system with a significantly poor prognosis. The primary challenge in treating GBM lies in the restrictive nature of the blood-brain barrier (BBB), impeding effective drug delivery to the brain. In this study, intranasal polymeric micelles encapsulating a quercetin-etoposide combination were developed to induce synergistic apoptotic effects and enhance direct drug delivery to the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!