The formation of unusual multilayered parallel lamellae-in-lamellae in symmetric supramolecular double-comb diblock copolymers is presented. While keeping the concentration of surfactant fixed, the number of internal layers was found to increase with molecular weight M up to 34 for the largest block copolymer. The number of internal structures n was established to scale as M and therefore enables easy design of such structures with great precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113798 | PMC |
http://dx.doi.org/10.1002/anie.201606890 | DOI Listing |
ACS Macro Lett
October 2018
Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of macromolecular architectures that are challenging to obtain through conventional all-covalent routes. In this work we present supramolecular double-comb triblock terpolymers in which both outer blocks are able to interact with a surfactant via hydrogen bonding and thereby form a comb-shaped architecture upon complexation. While the neat triblock terpolymer only formed a triple lamellar morphology, multiple hierarchical structures were observed in these supramolecular comb-coil-comb triblock terpolymers by simply adjusting the surfactant concentration.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2017
Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2016
Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
The formation of unusual multilayered parallel lamellae-in-lamellae in symmetric supramolecular double-comb diblock copolymers is presented. While keeping the concentration of surfactant fixed, the number of internal layers was found to increase with molecular weight M up to 34 for the largest block copolymer. The number of internal structures n was established to scale as M and therefore enables easy design of such structures with great precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!