A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP(+) (vs. only 2.5% relative activity with NAD(+)). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP(+)-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025769PMC
http://dx.doi.org/10.1038/srep33438DOI Listing

Publication Analysis

Top Keywords

sorbitol dehydrogenase
12
oxydans g624
12
gluconobacter oxydans
8
l-sorbose-producing enzymes
8
gosldh
7
highly efficient
4
efficient sorbitol
4
dehydrogenase gluconobacter
4
g624 improvement
4
improvement stability
4

Similar Publications

Ninety-nine percent of alpha-synuclein (α-syn) in the human body is distributed in erythrocytes. However, the role that α-syn plays in erythropoiesis remains unclear. To determine the effect of α-syn on erythroid differentiation, the erythroid cells, derived from human CD34+ progenitors in the umbilical cord, were cultured in a system composed of a series of cytokines and harvested after 6 days.

View Article and Find Full Text PDF

Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.

View Article and Find Full Text PDF

Root Microbiome and Metabolome Traits Associated with Improved Post-Harvest Root Storage for Sugar Beet Breeding Lines Under Southern Idaho Conditions.

Int J Mol Sci

November 2024

Northwest Irrigation and Soils Research Laboratory (NWISRL), United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Kimberly, ID 83341, USA.

Post-harvest storage loss in sugar beets due to root rot and respiration can cause >20% sugar loss. Breeding strategies focused on factors contributing to improved post-harvest storage quality are of great importance to prevent losses. Using 16S rRNA and ITS sequencing and sugar beet mutational breeding lines with high disease resistance (R), along with a susceptible (S) commercial cultivar, the role of root microbiome and metabolome in storage performance was investigated.

View Article and Find Full Text PDF

Engineering to metabolize sorbitol as the sole carbon source for synthesis of recombinant L-Asparaginase-II.

Prep Biochem Biotechnol

December 2024

Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Balasore, Odisha, India.

Sorbitol, known as D-Glucitol, is a hexose sugar alcohol that occurs naturally in various fruits, including berries, cherries, plums, pears, and apples. It is noteworthy that sorbitol can be metabolized by microbes, plants, and humans through distinct pathways. Nevertheless, in bacteria like (), sorbitol is not the primary carbon source and its utilization is generally suppressed due to carbon catabolite repression.

View Article and Find Full Text PDF

Melatonin treatment delayed fruit softening by regulating postharvest carbohydrate metabolism of hami melon.

Plant Physiol Biochem

December 2024

College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, 832000, China. Electronic address:

Melatonin (MT) treatment has been proven to improve fruit quality. Herein, the efficacy of 0.5 mmol L MT treatment on carbohydrate metabolism, fruit softening, and their relationship during storage of harvested Hami melons was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!