An ultrasensitive analytical method for direct detection of single nanoparticles in complex environment is described. The method relies on the wide-field surface plasmon microscopy (SPM). The suppression of matrix effects is achieved by image analysis based on the template matching. First, characteristic SPM images of nanoparticles are collected in aqueous suspensions. Then the detection of nanoparticles in complex environment is performed using template matching. Quantification and characterization of nanoparticles size was demonstrated at subppb level (∼100 pg/mL) in such complex media as wines, fruit juices, or cosmetic formulation. Visualization of the nanoparticles is performed in real time. The method does not require any sample pretreatment. If the minimally acceptable adsorption rate is defined as one nanoparticle to the whole sensor surface per few seconds, the working range of the method is ∼10 to 10 nanoparticles per mL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b02878 | DOI Listing |
PLoS One
January 2025
Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.
View Article and Find Full Text PDFInt Endod J
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
Aim: Previous studies have shown the important relationships between Enterococcus faecalis and Candida albicans in post-treatment endodontic disease (PTED). However, the fungal-bacterial interactions and their possible functional routes are less understood. In this study, we investigated the effect of extracellular vesicles (EVs) derived from C.
View Article and Find Full Text PDFDiscov Nano
January 2025
Oral Health Institute, Hamad Medical Corporation, Doha, Qatar.
Phytonanoparticles have emerged as a promising class of biomaterials for enhancing bone regeneration and osseointegration, offering unique advantages in biocompatibility, multifunctionality, and sustainability. This comprehensive review explores the synthesis, characterization, and applications of phytonanoparticles in bone tissue engineering. The green synthesis approach, utilizing plant extracts as reducing and stabilizing agents, yields nanoparticles with intrinsic bioactive properties that can synergistically promote osteogenesis.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Metal-organic frameworks (MOFs) are rigorously investigated as promising candidates for CO capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO reduction (CORR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
Core-shell structures demonstrate superior capability in customizing properties across multiple scales, offering valuable potential in catalysis, medicine, and performance materials. Integrating functional nanoparticles in a spatially controlled manner is particularly appealing for developing sophisticated architectures that support heterogeneous characteristics and tandem reactions. However, creating such complex structures with site-specific features remains challenging due to the dynamic microenvironment during the shell-forming process, which considerably impacts colloidal particle assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!