Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling.

Acta Biomater

CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France. Electronic address:

Published: December 2016

Unlabelled: Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition. However, whether and how matrix-bound BMP-2 can be internalized by cells and its relation to canonical (SMAD) and non-canonical signaling (ALP) remain open questions. In this study, we investigated the uptake and processing of BMP-2 by C2C12 myoblasts. This BMP-2 was presented either embedded in polyelectrolyte multilayer films (matrix-bound presentation) or as soluble form. Using fluorescently labeled BMP-2, we showed that the amount of matrix-bound BMP-2 internalized is dependent on the level of crosslinking of the polyelectrolyte films. Cav-1-mediated internalization is related to both SMAD and ALP signaling, while clathrin-mediated is only related to ALP signaling. BMP-2 internalization was independent of the presentation mode (sBMP-2 versus bBMP-2) for low crosslinked films (soft, EDC10) in striking contrast with high crosslinked (stiff, EDC70) films where internalization was much lower and slower for bBMP-2. As anticipated, internalization of sBMP-2 barely depended on the underlying matrix. Taken together, these results indicate that BMP-2 internalization can be tuned by the underlying matrix and activates downstream BMP-2 signaling, which is key for the effective formation of bone tissue.

Statement Of Significance: The presentation of growth factors from material surfaces currently presents significant challenges in academic research, clinics and industry. Being able to deliver efficiently these growth factors by a biomaterial will open new perspectives for regenerative medicine. However, to date, very little is known about how matrix-bound growth factors are delivered to cells, especially whether they are internalized and how they are signaling to drive key differentiation events. These initial steps are crucial as they will guide the subsequent processes leading to tissue regeneration. In this work, we investigate the uptake and processing by cells of BMP-2 ligands embedded in polyelectrolyte multilayer films in comparison to soluble BMP-2. We show that BMP-2 responsive cells can internalize matrix-bound BMP-2 and that internalization is dependent on the cross-linking level of the polyelectrolyte films. In addition, we show that internalization is mediated by both clathrin- and caveolin-dependent pathways. While inhibiting clathrin-dependent endocytosis affects only non-canonical signaling, blocking caveolin-1-dependent endocytosis reduces both canonical and non-canonical BMP signaling. The signaling pathways found for matrix-bound BMP-2 are similar to those found for soluble BMP-2. These results highlight that BMP-2 presented by a biomaterial at the ventral side of the cell can trigger major endocytic and associated signaling pathways leading to bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113753PMC
http://dx.doi.org/10.1016/j.actbio.2016.09.014DOI Listing

Publication Analysis

Top Keywords

matrix-bound bmp-2
20
bmp-2
17
bmp-2 internalization
16
growth factors
12
signaling
11
internalization
9
matrix-bound
8
side cell
8
ventral side
8
bmp-2 internalized
8

Similar Publications

Introduction: Bone morphogenetic proteins (BMPs) and transforming growth factors (TGF-β) are members of the TGF-β superfamily, known for their roles in several physiological and pathological processes. These factors are known to bind in vivo to BMP and TGF-β receptors, respectively, which induces the phosphorylation of Smad (pSmad) transcription factors. This pathway is generally studied with Western blot and luciferase bioluminescence assay, which presents some limitations.

View Article and Find Full Text PDF

Upon BMP-2 stimulation, the osteoblastic lineage commitment in C2C12 myoblasts is associated with a microenvironmental change that occurs over several days. How does BMP-2 operate a switch in adhesive machinery to adapt to the new microenvironment and to drive bone cell fate is not well understood. Here, we addressed this question for BMP-2 delivered either in solution or physically bound of a biomimetic film, to mimic its presentation to cells the extracellular matrix (ECM).

View Article and Find Full Text PDF

Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging.

Matrix Biol

August 2022

Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States. Electronic address:

Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors.

View Article and Find Full Text PDF

Differential bioactivity of four BMP-family members as function of biomaterial stiffness.

Biomaterials

February 2022

Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Institut Universitaire de France (IUF), France. Electronic address:

While a soft film itself is not able to induce cell spreading, BMP-2 presented via such soft film (so called "matrix-bound BMP-2") was previously shown to trigger cell spreading, migration and downstream BMP-2 signaling. Here, we used thin films of controlled stiffness presenting matrix-bound BMPs to study the effect of four BMP members (BMP-2, 4, 7, 9) on cell adhesion and differentiation of skeletal progenitors. We performed automated high-content screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity.

View Article and Find Full Text PDF

Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling.

Acta Biomater

December 2016

CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France. Electronic address:

Unlabelled: Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!