The aim of present investigation is to evaluate the feasibility of transdermal iontophoretic delivery of tacrine hydrochloride in Sprague Dawley (SD) rats using anodal iontophoretic patches and to correlate plasma tacrine concentration profiles to in vitro tacrine permeation flux. In vitro skin permeation studies were carried out across artificial membrane CELGRAD 2400, freshly excised SD rat abdominal skin, freshly excised hairless rat abdominal skin, and frozen pig skin to examine the role of permeation membranes. Furthermore, plasma profiles with an application of 0.1-0.3mA current strength and tacrine concentration loading of 5-20mg/ml were obtained in SD rats. The tacrine plasma profiles were fitted to one-compartmental model using WinNonlin and in vivo transdermal absorption rates were then correlated to in vitro permeation profiles using various approaches. Tacrine permeation across membranes revealed current dependent interspecies differences at lower current strength application which diminished at higher current strength application, whereas, no significant difference in tacrine permeation was observed across fresh and frozen SD rat skin under 0.2mA current application. In vivo studies confirmed current and concentration dependent tacrine plasma profiles with possible tacrine depot formation under the skin in-line with earlier in vitro results. Correlation of in vivo transdermal absorption rates to in vitro permeation profiles revealed higher in vitro permeation fluxes compare to in vivo transdermal absorption rates at varied combination of current strength and concentrations. Present in vivo studies support the earlier published in vitro findings and tacrine plasma profiles show a potential to reach therapeutic effective concentration of tacrine hydrochloride to provide a platform for pre-programmed tacrine delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.09.038 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G: Colombo, 71, 20133 Milano, Italy.
Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan.
: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil.
: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!