In the present study, a selection of basic substitution patterns on benzoyl(trimethyl)germane was investigated using time-dependent density-functional theory (TDDFT) to explore the influence on the stability and on the relative order of the lowest excited electronic states. The theoretical results are in agreement with absorption and fluorescence measurements. We show that electron-withdrawing groups decrease the energetic level of the lowest singlet and triplet state relative to the electron-pushing systems resulting in red-shifted radiative transitions (fluorescence). In the first triplet state electron-withdrawing groups lead to an increased dissociation barrier and a close approach with the singlet ground state before the transition state in the triplet state is reached, favoring radiationless ground-state recovery. The results are also in good agreement with empirical concepts of organic chemistry, therefore providing simple rules for synthetic strategies towards tuning the excited-state properties of benzoylgermanes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201600712DOI Listing

Publication Analysis

Top Keywords

triplet state
12
electron-withdrawing groups
8
state
5
photophysical properties
4
properties benzoylgermane
4
benzoylgermane para-substituted
4
para-substituted derivatives
4
derivatives substituent
4
substituent effects
4
effects electronic
4

Similar Publications

Localized and Excimer Triplet Electronic States of Naphthalene Dimers: A Computational Study.

Molecules

January 2025

Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.

We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance.

View Article and Find Full Text PDF

Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g.

View Article and Find Full Text PDF

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes.

Nat Commun

January 2025

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.

High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.

View Article and Find Full Text PDF

The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!