Cucurbit[7]uril (CB[7]) is known to bind strongly to hydrophilic amino saccharide guests with exceptional α-anomer selectivities under aqueous conditions. Single-crystal X-ray crystallography and computational methods were used to elucidate the reason behind this interesting phenomenon. The crystal structures of protonated galactosamine (GalN) and glucosamine (GluN) complexes confirm the inclusion of α anomers inside CB[7] and disclose the details of the host-guest binding. Whereas computed gas-phase structures agree with these crystal structures, gas-phase binding free energies show preferences for the β-anomer complexes over their α counterparts, in striking contrast to the experimental results under aqueous conditions. However, when the solvation effect is considered, the binding structures drastically change and the preference for the α anomers is recovered. The α anomers also tend to bind more tightly and leave less space in the CB[7] cavity toward inclusion of only one water molecule, whereas loosely bound β anomers leave more space toward accommodating two water molecules, with markedly different hydrogen-bonding natures. Surprisingly, entropy seems to contribute significantly to both anomeric discrimination and binding. This suggests that of all the driving factors for the strong complexation of the hydrophilic amino saccharide guests, water mediation plays a crucial role in the anomer discrimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201602810 | DOI Listing |
Carbohydr Res
December 2024
Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan. Electronic address:
We previously prepared self-reinforced chitin composite (SR-ChC) films, also called all-chitin composites, comprising two components, that is, scale-down chitin nanofibers (SD-ChNFs) with high crystallinity and scale-down low-crystalline chitin (SD-LC-Ch) matrixes. In this study, we precisely evaluated hydrophilicity under water enviromental conditions and its effect on cell adhesion using human-derived cancer cells on the SR-ChC film surfaces. The surface analysis of the SR-ChC films with reduced crystallinity revealed reorientation of the molecular chain assemblies with amino groups in the SD-LC-Ch components in water.
View Article and Find Full Text PDFFood Chem
December 2024
National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Systematic research is still lacking on the content of hydrophilic compounds in Fu Brick Tea (FBT) from major Chinese production regions and their variation patterns during the processing of FBT. This study utilized optimized non-targeted (UHPLC-Q-Exactive Orbitrap-MS) and targeted (UHPLC-QqQ-MS) metabolomics to analyze 73 FBT samples from six regions of China and 30 samples from different stages of FBT processing. 573 and 74 hydrophilic compounds were respectively relatively and absolutely quantified for the first time.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis.
View Article and Find Full Text PDFGene Expr Patterns
December 2024
College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China. Electronic address:
Deer antlers exhibit rapid growth during the velvet phase. As a critical endogenous growth factor in animals, midkine (MDK) is likely closely associated with the growth of antlers. However, the spatio-temporal expression pattern of MDK during the velvet phase was unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!