Oxidative stress (OS) derived from an increase in intracellular reactive oxygen species (ROS) is a major determinant of aging and lifespan. It has also been associated with several age-related disorders, like postmenopausal osteoporosis of Mesenchymal stem cells (MSCs). MSCs are the common precursors for osteoblasts and adipocytes; appropriate commitment and differentiation of MSCs into a specific phenotype is modulated, among other factors, by ROS balance. MSCs have shown more resistance to ROS than differentiated cells, and their redox status depends on complex and abundant anti-oxidant mechanisms. The purpose of this work was to analyze in real time, H O signaling in individual h-MSCs, and to compare the kinetic parameters of H O management by cells derived from both control (c-) and osteoporotic (o-) women. For these purposes, cells were infected with a genetically encoded fluorescent biosensor named HyPer, which is specific for detecting H O inside living cells. Subsequently, cells were sequentially challenged with 50 and 500 μM H O pulses, and the cellular response was recorded in real time. The results demonstrated adequate expression of the biosensor allowing registering fluorescence from HyPer at a single cell level. Comparison of the response of c- and o-MSCs to the oxidant challenges demonstrated improved antioxidant activity in o-MSCs. This was further corroborated by measuring the relative expression of mRNAs for catalase, superoxide dismutase-1, thioredoxine, and peroxiredoxine, as well as by cell-surviving capacity under short-term H O treatment. We conclude that functional differences exist between healthy and osteoporotic human MSCs. The mechanism for these differences requires further study. J. Cell. Biochem. 118: 585-593, 2017. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212597 | PMC |
http://dx.doi.org/10.1002/jcb.25739 | DOI Listing |
Dev Growth Differ
January 2025
Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.
View Article and Find Full Text PDFBackground/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.
View Article and Find Full Text PDFCell Biosci
January 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Traumatic Clinic, Shanghai East Hospital of Tongji University, Shanghai, 200120, China.
Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.
Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.
J Orthop Surg Res
January 2025
Xuzhou Medical University Affiliated Stomatology Hospital, Xuzhou, 221002, Jiangsu Province, China.
Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.
Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!