Amelogenin, the predominant extracellular matrix protein secreted by ameloblasts, has been shown to be essential for proper tooth enamel formation. In this study, amelogenin adsorption to hydroxyapatite (HAP) surfaces, a prototype for enamel mineral, has been studied using a quartz crystal microbalance (QCM) to interrogate effects of protein phosphorylation and solution pH. Dynamic flow-based experiments were conducted at pH 7.4 and 8.0 using native phosphorylated porcine amelogenin (P173) and recombinant non-phosphorylated porcine amelogenin (rP172). Loading capacities (μmol/m) on HAP surfaces were calculated under all conditions and adsorption affinities (K) were calculated when Langmuir isotherm conditions appeared to be met. At pH 8.0, binding characteristics were remarkably similar for the two proteins. However, at pH 7.4 a higher affinity and lower surface loading for the phosphorylated P173 was found compared to any other set of conditions. This suggests that phosphorylated P173 adopts a more extended conformation than non-phosphorylated full-length amelogenin, occupying a larger footprint on the HAP surface. This surface-induced structural difference may help explain why P173 is a more effective inhibitor of spontaneous HAP formation in vitro than rP172. Differences in the viscoelastic properties of P173 and rP172 in the adsorbed state were also observed, consistent with noted differences in HAP binding. These collective findings provide new insight into the important role of amelogenin phosphorylation in the mechanism by which amelogenin regulates enamel crystal formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096982 | PMC |
http://dx.doi.org/10.1016/j.colsurfb.2016.09.010 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
Root caries present a significant challenge in dentistry. The unsatisfactory prognosis of restorative treatments requires novel, noninvasive preventive strategies. Here, we developed an amelogenin-derived peptide-modified poly(amidoamine), PAMAM-C11, to prevent demineralization in caries lesions and control periodontal destruction.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan430079, China.
To investigate the role of WW domain containing E3 ubiquitin protein ligase 1 (WWP1) in enamel development of mice. Single-cell RNA sequencing data of incisor tissues of postnatal day 7 (P7) mice and mandibular first molar tooth germs of P3.5 mice were used to analyze the expression of WWP1 in dental epithelial cells.
View Article and Find Full Text PDFForensic Sci Int Genet
December 2024
Department of Forensic Medicine, University of Helsinki, Helsinki, Finland; Forensic Science Institute, Radford University, Radford, VA, USA. Electronic address:
Human identification by forensic DNA profiling primarily relies on the analysis of short tandem repeat markers (STRs) and Amelogenin or other sex determining markers. The resultant DNA profiles can be compared directly between evidence and reference samples or indirectly (i.e.
View Article and Find Full Text PDFLeg Med (Tokyo)
December 2024
Forensic DNA Section, National Forensic Service Jeju Branch, 221, Cheomdan-ro, Jeju-si, Jeju-do 63309, Republic of Korea; Department of Forensic Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. Electronic address:
Owing to the unique inheritance pattern of the X chromosome, X-chromosomal short tandem repeat (X-STR) analysis represents a valuable tool in forensic DNA examination-particularly in complex kinship cases, missing person investigations, and disaster victim identification. We analyzed buccal swabs from 429 unrelated Korean males for forensic statistical parameters of 12 X-STRs. Among the 427 individuals analyzed (2 were excluded), DXS10135 was the most informative marker (polymorphism information content [PIC] = 0.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!