Hypersaline environments that are subject to salinity changes are particularly rich in viruses. Here we report a newly isolated archaeal halovirus, Haloarcula hispanica pleomorphic virus 3 (HHPV3). Its reproduction significantly retards host growth and decreases cell viability without causing lysis. HHPV3 particles require a minimum of 3M NaCl for stability and maintain high infectivity even in saturated salt. Notably, virions are irreversibly inactivated at ~1.5M NaCl in neutral pH, but tolerate this salinity at alkaline pH. The HHPV3 virion is a pleomorphic membrane vesicle containing two major protein species and lipids acquired nonselectively from the host membrane. The circular double-stranded DNA genome contains a conserved gene block characteristic of pleolipoviruses. We propose that HHPV3 is a member of the Betapleolipovirus genus (family Pleolipoviridae). Our findings add insights into the diversity observed among the pleolipoviruses found in hypersaline environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2016.09.002DOI Listing

Publication Analysis

Top Keywords

haloarcula hispanica
8
hispanica pleomorphic
8
pleomorphic virus
8
high infectivity
8
infectivity saturated
8
saturated salt
8
hypersaline environments
8
vesicle-like virion
4
virion haloarcula
4
virus preserves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!