Spin-polarized scanning tunneling microscopy is used to investigate the magnetic state of the Fe monolayer on Re(0001). Two coexisting atomic-scale noncollinear spin textures are observed with a sharp transition between them on the order of the atomic lattice spacing. A position correlation between the two spin states is observed both in experiments and in Monte Carlo simulations, demonstrating their coupling behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b02528 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India.
Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.
The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.
View Article and Find Full Text PDFNano Lett
December 2024
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
Ferro-valleytricity that manifests spin-orbit coupling (SOC)-induced spontaneous valley polarization is generally considered to occur in two-dimensional (2D) materials with out-of-plane spin magnetization. Here, we propose a mechanism to realize SOC-induced valley polarization and ferro-valleytricity in 2D materials with in-plane spin magnetization, wherein the physics correlates to non-collinear magnetism in triangular lattice. Our model analysis provides comprehensive ingredients that allow for ferro-valleytricity with in-plane spin magnetization, revealing that mirror symmetry favors remarkable valley polarization and time-reversal-mirror joint symmetry should be excluded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!