Fabrication of Graphene-Polymer Nanocomposites Through Ionic Polymerization.

J Phys Chem A

Laboratory for Precision and Nano Processing Technologies, The University of New South Wales, Sydney, New South Wales 2052, Australia.

Published: October 2016

The extraordinary properties of graphene nanosheets (GNS) and the high performance of polymer-based composites have stimulated extensive research in the realm of polymer nanocomposites. This work examines the mechanisms and approach for the production of GNS-polymer composites by first principle ab initio calculations. The results show that GNS functionalized with anionic/cationic moieties can initiate anionic/cationic polymerization reactions, leading to chemically bonded GNS-polymer composites via the established anionic/cationic polymerization schemes. These outcomes deliver a solid theoretical basis for fabricating strong polymer nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b05333DOI Listing

Publication Analysis

Top Keywords

polymer nanocomposites
8
gns-polymer composites
8
anionic/cationic polymerization
8
fabrication graphene-polymer
4
graphene-polymer nanocomposites
4
nanocomposites ionic
4
ionic polymerization
4
polymerization extraordinary
4
extraordinary properties
4
properties graphene
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance.

Nat Commun

January 2025

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.

View Article and Find Full Text PDF

Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging.

View Article and Find Full Text PDF

Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics.

Adv Colloid Interface Sci

January 2025

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:

In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.

View Article and Find Full Text PDF

Recent emerging trends in dendrimer research: Electrochemical sensors and their multifaceted applications in biomedical fields or healthcare.

Biosens Bioelectron

January 2025

Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye. Electronic address:

Dendrimers enhance the selectivity and sensitivity of sensors through their synthetic, highly branched, three-dimensional structures and large surface area. This unique architecture enables precise functionalization with various recognition elements, significantly improving the specificity and sensitivity of electrochemical sensors for detecting disease markers, biomolecules, and environmental pollutants. Dendrimer-based electrochemical sensors offer promising advancements in healthcare, such as detecting biomarkers for heart disease, monitoring blood glucose levels, and sensitively determining cancer-related proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!